The global burden of disease caused by microbial pathogens remains one of the largest challenges facing the international biomedical community. Among the leading causes of mortality worldwide are the causative agents of AIDS, Malaria and Tuberculosis. Furthermore, many of these microbes are resistant to multiple antimicrobial therapies, highlighting the need for new therapies and vaccines. The increased knowledge of the complex interactions between the pathogen, indigenous microbiota and host immune system that our Training Program offers to pre-and postdoctoral fellows will lead to new ways to treat, cure and prevent various diseases. The Department of Microbiology and Immunology at Stanford runs a world class training program in Host- Pathogen interactions and the program stands on four pillars: talented students/postdocs, committed faculty, rigorous and thorough training, and a dedicated university staff and infrastructure. The program is multidisciplinary and has tremendous breadth and depth. We study many aspects of host-parasite interactions- the microbe (viral, bacterial or protozoal), the host and together as a system. Some groups study the host's interaction with native microbiota and between members of this microbiota. The members of the microbiota are studied both for their ability to act as symbionts and pathobionts. Others study the molecular biology of host pathogen interactions. We also develop techniques for monitoring these interactions, like Cytoff, Spade and bioluminescent imaging and culturing techniques. Whole animal models from flies to mice are used and our state of the art Human Immune Monitoring Center now allows us to expand our work in human biology. Our students and postdocs are successful, publishing high impact papers and finding terrific positions in all aspects of science, from research to teaching to policy and consulting. We have been recruiting an average of 6 predoctoral students and approximately 30 postdocs to the program per year. We use the training grant to support the first three years of our graduate students'education and one (or in exceptional cases, two years) of funding for select postdocs. We are requesting to continue our present level of funding of 8 pre-doctoral training slots and 4 postdoctoral traine slots. The grant has been active for the past 24 years and we are requesting another 5 years of funding.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Robbins, Christiane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Contag, Christopher H; Lie, Wen-Rong; Bammer, Marie C et al. (2014) Monitoring dynamic interactions between breast cancer cells and human bone tissue in a co-culture model. Mol Imaging Biol 16:158-66
Ewald, Sarah E; Chavarria-Smith, Joseph; Boothroyd, John C (2014) NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect Immun 82:460-8
Shastri, Anjali J; Marino, Nicole D; Franco, Magdalena et al. (2014) GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response. Infect Immun 82:2595-605
Franco, Magdalena; Shastri, Anjali J; Boothroyd, John C (2014) Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates. Eukaryot Cell 13:483-93
Pompey, Justine M; Morf, Laura; Singh, Upinder (2014) RNAi pathway genes are resistant to small RNA mediated gene silencing in the protozoan parasite Entamoeba histolytica. PLoS One 9:e106477
Fienberg, Harris G; Nolan, Garry P (2014) Mass cytometry to decipher the mechanism of nongenetic drug resistance in cancer. Curr Top Microbiol Immunol 377:85-94
Pearson, Richard J; Morf, Laura; Singh, Upinder (2013) Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem 288:4462-74
Buchholz, Kerry R; Bowyer, Paul W; Boothroyd, John C (2013) Bradyzoite pseudokinase 1 is crucial for efficient oral infectivity of the Toxoplasma gondii tissue cyst. Eukaryot Cell 12:399-410
Morf, Laura; Pearson, Richard J; Wang, Angelia S et al. (2013) Robust gene silencing mediated by antisense small RNAs in the pathogenic protist Entamoeba histolytica. Nucleic Acids Res 41:9424-37
Eisele, Nicholas A; Ruby, Thomas; Jacobson, Amanda et al. (2013) Salmonella require the fatty acid regulator PPARýý for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 14:171-82

Showing the most recent 10 out of 67 publications