Continued training in The Molecular and Cellular Bases of Infectious Diseases (MCBID) is proposed for 8 PhD students and 3 postdoctoral fellows selected from large pools of highly qualified applicants. The training program is uniquely situated in the Molecular Microbiology and Immunology Department (MMI) within the Johns Hopkins Bloomberg School of Public Health. The 29 training faculty have a wide range of experience and expertise in viruses, bacteria and parasites causing human disease and in the vectors and environmental factors associated with emergence and transmission of these pathogens. The training program has been funded since 1994 and has produced scientists working in many areas of academia and government on problems related to infectious diseases, vaccine development and the public's health. The goal of the MCBID training program is to provide students with both a firm foundation in the basic disciplines necessary for the study of infectious diseases and a perspective that will enable them to apply their knowledge creatively to public health problems. Each student is expected to complete 1) a series of required courses in the basic disciplines of cell and molecular biology, biochemistry, and immunology, 2) courses in virology, bacteriology, parasitology, and disease ecology, 3) courses in research ethics and public health perspectives, and 4) elective courses relevant to thesis topic and long-term career goals. Elective courses are chosen from among courses available in MMI, other departments in the School of Public Health, or in other Divisions of the University. Students will also complete 3 11-week laboratory rotations during the first year. Student progress is monitored by a Thesis Advisory Committee and the Graduate Program Committee. The goals of the postdoctoral training program are 1) to provide focused training in those areas of the molecular and cellular basis of infectious diseases in which program faculty have special expertise;2) to provide an opportunity for doctoral degree holders trained in more traditional environments to broaden their exposure to problems of public health importance and to evaluate their career goals in terms of public health issues;and 3) to prepare the PDF for an independent career in the biological sciences.

Public Health Relevance

: This program is highly relevant to national interests in the areas of emerging infectious diseases, as it trains students and postdoctoral fellows broadly not only in both the molecular aspects of pathogen biology and disease pathogenesis, but also in the ecology of disease emergence and the role of vectors in pathogen transmission.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
5T32AI007417-17
Application #
8119725
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Mcsweegan, Edward
Project Start
1994-09-01
Project End
2015-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
17
Fiscal Year
2011
Total Cost
$450,573
Indirect Cost
Name
Johns Hopkins University
Department
Microbiology/Immun/Virology
Type
Schools of Public Health
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Craig, J M; Scott, A L (2017) Antecedent Nippostrongylus infection alters the lung immune response to Plasmodium berghei. Parasite Immunol 39:
Nelson, Ashley N; Putnam, Nicole; Hauer, Debra et al. (2017) Evolution of T Cell Responses during Measles Virus Infection and RNA Clearance. Sci Rep 7:11474
Wohlgemuth, Nicholas; Ye, Yang; Fenstermacher, Katherine J et al. (2017) The M2 protein of live, attenuated influenza vaccine encodes a mutation that reduces replication in human nasal epithelial cells. Vaccine 35:6691-6699
Das, Smita; Muleba, Mbanga; Stevenson, Jennifer C et al. (2017) Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasit Vectors 10:45
Grossman, Nina T; Casadevall, Arturo (2017) Physiological Differences in Cryptococcus neoformans Strains In Vitro versus In Vivo and Their Effects on Antifungal Susceptibility. Antimicrob Agents Chemother 61:
Forero, Adriana; Fenstermacher, Katherine; Wohlgemuth, Nicholas et al. (2017) Evaluation of the innate immune responses to influenza and live-attenuated influenza vaccine infection in primary differentiated human nasal epithelial cells. Vaccine 35:6112-6121
Bowen, Anthony; Wear, Maggie P; Cordero, Radames J B et al. (2017) A Monoclonal Antibody to Cryptococcus neoformans Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. J Biol Chem 292:417-434
Luo, Ruibang; Zimin, Aleksey; Workman, Rachael et al. (2017) First Draft Genome Sequence of the Pathogenic Fungus Lomentospora prolificans (Formerly Scedosporium prolificans). G3 (Bethesda) 7:3831-3836
Vom Steeg, Landon G; Klein, Sabra L (2017) Sex Steroids Mediate Bidirectional Interactions Between Hosts and Microbes. Horm Behav 88:45-51
Manivannan, Sivabalan; Baxter, Victoria K; Schultz, Kimberly L W et al. (2016) Protective Effects of Glutamine Antagonist 6-Diazo-5-Oxo-l-Norleucine in Mice with Alphavirus Encephalomyelitis. J Virol 90:9251-62

Showing the most recent 10 out of 111 publications