Infectious diseases pose a major threat to public health both in the United States and world-wide. Respiratory viruses such as avian influenza have the potential to develop pandemics and kill millions of people. Bacterial pathogens are developing resistance to current antibiotics, resulting in major epidemics. Newly emerging pathogens such as Human Immunodeficiency Virus are rampant in many countries of the world with devastating consequences. In addition, there is the threat that infectious agents will be developed as bioterrorist weapons. In order to meet this challenge there is a need for the training of creative young scientists capable of integrating basic molecular and cellular immunology with infectious disease research. The goal of this proposed Training Program is to produce well-qualified new investigators capable of establishing vigorous independent research programs in infectious disease immunology. Trudeau Institute is an ideal training environment, providing access to a collaborative group of world class scientists with active programs in a variety of well-developed infectious disease models. The research emphasis at the Institute is to address challenging problems in the immunology of infectious disease through a deep mechanistic understanding of the functioning of the immune system. The training faculty are well-funded, established investigators in the field of infectious disease immunology and have an extensive publication record. Importantly, Trudeau Institute has an excellent track record in the training of successful young investigators. The foundation of the training program is intensive laboratory-based research that will foster a creative approach to the design of research strategies and encourage critical analytical thinking. Trainees will have access to state of the art research technologies through the well-developed Institutional cores, including flow cytometry, molecular biology and imaging. In addition, the Institute provides modern laboratory and animal space for studying a variety of infectious diseases. The trainees benefit greatly from the highly collaborative environment at the Institute. As an integral part of the program, the trainees will attend regular seminars by Institutional and external speakers, will regularly present their research both at the Trudeau Institute and at regional and national meetings, will acquire experience in grant writing, and will acquire experience in management and directing the research projects of visiting college summer students. The training period will be 3 years in length. As a result of this extensive and well-rounded training program, trainees will be positioned to establish successful, independent research careers in immunology and infectious disease.

Public Health Relevance

Infectious diseases pose a world-wide threat to human health. Biomedical research is essential to increase our understanding of the body's immune system, in order to develop ways to treat and prevent disease. Therefore an important priority is the in-depth training of new scientists who can carry out vigorous research programs to meet the increasing global challenge.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Allergy & Clinical Immunology-1 (AITC)
Program Officer
Prograis, Lawrence J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Trudeau Institute, Inc.
Saranac Lake
United States
Zip Code
Everts, Bart; Amiel, Eyal; Huang, Stanley Ching-Cheng et al. (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKK? supports the anabolic demands of dendritic cell activation. Nat Immunol 15:323-32
Freeman, Michael L; Burkum, Claire E; Cookenham, Tres et al. (2014) CD4 T cells specific for a latency-associated ?-herpesvirus epitope are polyfunctional and cytotoxic. J Immunol 193:5827-34
Vomhof-DeKrey, Emilie E; Yates, Jennifer; Leadbetter, Elizabeth A (2014) Invariant NKT cells provide innate and adaptive help for B cells. Curr Opin Immunol 28:12-7
Amiel, Eyal; Everts, Bart; Fritz, Daniel et al. (2014) Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol 193:2821-30
Brincks, Erik L; Roberts, Alan D; Cookenham, Tres et al. (2013) Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J Immunol 190:3438-46
Freeman, Michael L; Burkum, Claire E; Lanzer, Kathleen G et al. (2013) Gammaherpesvirus latency induces antibody-associated thrombocytopenia in mice. J Autoimmun 42:71-9
Fairfax, Keke C; Amiel, Eyal; King, Irah L et al. (2012) IL-10R blockade during chronic schistosomiasis mansoni results in the loss of B cells from the liver and the development of severe pulmonary disease. PLoS Pathog 8:e1002490
Freeman, Michael L; Burkum, Claire E; Woodland, David L et al. (2012) Importance of antibody in virus infection and vaccine-mediated protection by a latency-deficient recombinant murine ýý-herpesvirus-68. J Immunol 188:1049-56
Freeman, Michael L; Burkum, Claire E; Jensen, Meghan K et al. (2012) ?-Herpesvirus reactivation differentially stimulates epitope-specific CD8 T cell responses. J Immunol 188:3812-9
Freeman, Michael L; Burkum, Claire E; Yager, Eric J et al. (2011) De novo infection of B cells during murine gammaherpesvirus 68 latency. J Virol 85:10920-5

Showing the most recent 10 out of 41 publications