The Harvard Medical School Department of Dermatology training grant (now administered by Brigham and Women's Hospital) has a long and distinguished history of preparing individuals for careers in biomedical research relevant to the skin. Historically, one of its major roles has been to support the development of dermatologist physician scientists interested in a career in biomedical research. It also supports the development of PhD scientists who are seeking a biomedical research career relevant to skin biology, skin diseases, and skin cancers. During the last funding cycle, the training grant has achieved its goals, training both dermatologist physician scientists and PhD scientists, the vast majority of whom are employed at academic institutions or in the biotechnology sector. Looking back over a longer timeline, we are able to demonstrate that trainees on our training grant have generated over 120 publications in peer reviewed journals, including some of the highest impact journals in the biomedical sciences. In addition, ex-trainees have been funded by RO1 grants, K awards, other NIH grants, and multiple awards from the Dermatology Foundation and other private funding agencies. Since 2008, the Harvard Medical School Department of Dermatology has been decentralized into three affiliated Harvard Departments based at the key affiliated hospital-the Beth Israel Deaconess Medical Center, the Brigham and Women's Hospital, and the Massachusetts General Hospitals. The Chairs of these hospitals are represented on an Executive Committee, currently chaired by Dr. Kupper. Given this decentralization, the Harvard Dermatology training grant assumes an even greater significance as the "glue" that helps hold these departments together, along with the shared residency program. The training grant goals over the next five years are unchanged: to identify, support, and train the best and most promising dermatologist physician scientists, and PhD (non-MD) scientists, as a means of preparing them for careers in biomedical research. It appears that pay line percentiles in most NIH institutes will remain in the low-teens for the foreseeable future. This means, quite simply, that training grant support for young biomedical scientists interested in skin disease research has never been more critical to the success of their careers, and by extension, to the survival of our specialty.

Public Health Relevance

At least two years of mentorship and training in research approaches and techniques are absolutely essential as graduates of dermatology training programs or PhD programs transition from student to independent biomedical scientists. The Harvard Dermatology Training grant provides this support, partnering the most promising trainees with accomplished and supportive research mentors who will sponsor their work in their laboratories. We wish to continue to build on the extraordinary success that this program has achieved over the last 35 years, in training the best and the brightest biomedical scientists of tomorrow.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Cibotti, Ricardo
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Elmariah, Sarina B; Reddy, Vemuri B; Lerner, Ethan A (2014) Cathepsin S signals via PAR2 and generates a novel tethered ligand receptor agonist. PLoS One 9:e99702
Jalian, H Ray; Avram, Mathew M; Garibyan, Lilit et al. (2014) Paradoxical adipose hyperplasia after cryolipolysis. JAMA Dermatol 150:317-9
Gbabe, Oluwatoyin F; Okwundu, Charles I; Dedicoat, Martin et al. (2014) Treatment of severe or progressive Kaposi's sarcoma in HIV-infected adults. Cochrane Database Syst Rev 8:CD003256
Mollah, Shamim A; Dobrin, Joseph S; Feder, Rachel E et al. (2014) Flt3L dependence helps define an uncharacterized subset of murine cutaneous dendritic cells. J Invest Dermatol 134:1265-75
Garibyan, Lilit; Sipprell 3rd, William H; Jalian, H Ray et al. (2014) Three-dimensional volumetric quantification of fat loss following cryolipolysis. Lasers Surg Med 46:75-80
Larson, Allison R; Lee, Chung-Wei; Lezcano, Cecilia et al. (2014) Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. Am J Pathol 184:71-8
Guenova, Emmanuella; Watanabe, Rei; Teague, Jessica E et al. (2013) TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res 19:3755-63
Dowlatshahi, Mitra; Huang, Victor; Gehad, Ahmed E et al. (2013) Tumor-specific T cells in human Merkel cell carcinomas: a possible role for Tregs and T-cell exhaustion in reducing T-cell responses. J Invest Dermatol 133:1879-89
Elmariah, Sarina B; Lerner, Ethan A (2011) Topical therapies for pruritus. Semin Cutan Med Surg 30:118-26
Scott, Kenneth L; Chin, Lynda (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16:2229-34

Showing the most recent 10 out of 63 publications