The proposal is to continue a training program in cancer research at Columbia University that was established in 1984. The rationale of the Cancer Biology Training Program is to identify and recruit individuals with outstanding potential and prepare them for highly productive careers in cancer research. This will be achieved by offering a rigorous didactic curriculum, providing opportunities for cancer research in the laboratories of Columbia University faculty, and fostering an interactive environment in which trainees can gain exposure to the full range of scientific disciples involved in cancer research. Funds are requested to support 6 postdoctoral and 4 predoctoral trainees annually. Training is provided by a Program Faculty comprised of 37 independent cancer scientists, most of whom are well funded by grants from the NCI (and other cancer-focused organizations) and highly productive in terms of cancer research. The participating faculty are selected on the basis of the cancer focus and quality of their research programs, their record of productive interactions with other cancer investigators, and their experience in training postdoctoral fellows and predoctoral students. The Predoctoral and Postdoctoral Trainees are chosen competitively according to the cancer focus and quality of their proposed research project, their past academic and research performance, their future potential as independent investigators, and their commitment to a career in cancer research. The Cancer Biology Training Program has benefited greatly from a recent expansion of cancer research at Columbia University Medical Center. This expansion was driven by the opening in 2005 of the Irving Cancer Research Center, a new 300,000 square-foot 10-story building devoted entirely to cancer research, and the continuing recruitment of leading scientists in the basic/translational, clinical and population arenas of cancer research. These developments have broadened the scope and enhanced the quality of the Cancer Biology Training Program, as well as attracted a superior pool of trainees seeking careers in cancer research.

Public Health Relevance

Despite significant progress, cancer remains a critical health problem and a major cause of mortality worldwide. Given the complexity of the malignant process and the distinct etiologic and therapeutic features of the various subtypes of human cancer, cancer research will remain a high priority for society in years to come. Therefore, the next generation of scientists must be imparted with the skills to conduct cancer research in a rigorous, innovative, and productive manner. Accordingly, goal of the Cancer Biology Training Program is to identify and recruit individuals with outstanding potential and prepare them for highly productive careers in cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
2T32CA009503-26
Application #
8338993
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
1984-09-01
Project End
2017-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
26
Fiscal Year
2012
Total Cost
$364,216
Indirect Cost
$25,951
Name
Columbia University (N.Y.)
Department
Pathology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Billon, Pierre; Bryant, Eric E; Joseph, Sarah A et al. (2017) CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell 67:1068-1079.e4
Milanovic, Maja; Heise, Nicole; De Silva, Nilushi S et al. (2017) Differential requirements for the canonical NF-?B transcription factors c-REL and RELA during the generation and activation of mature B cells. Immunol Cell Biol 95:261-271
Taglialatela, Angelo; Alvarez, Silvia; Leuzzi, Giuseppe et al. (2017) Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol Cell 68:414-430.e8
Lee, Jin-Ku; Wang, Jiguang; Sa, Jason K et al. (2017) Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat Genet 49:594-599
De Silva, Nilushi S; Anderson, Michael M; Carette, Amanda et al. (2016) Transcription factors of the alternative NF-?B pathway are required for germinal center B-cell development. Proc Natl Acad Sci U S A 113:9063-8
Wang, Jiguang; Cazzato, Emanuela; Ladewig, Erik et al. (2016) Clonal evolution of glioblastoma under therapy. Nat Genet 48:768-76
Metzger, Michael J; Villalba, Antonio; Carballal, MarĂ­a J et al. (2016) Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534:705-9
Hayano, M; Yang, W S; Corn, C K et al. (2016) Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23:270-8
Ruff, Patrick; Donnianni, Roberto A; Glancy, Eleanor et al. (2016) RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication. Cell Rep 17:3359-3368
Ou, Yang; Wang, Shang-Jui; Li, Dawei et al. (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A 113:E6806-E6812

Showing the most recent 10 out of 141 publications