The Mount Sinai School of Medicine (MSSM) proposes to continue a highly successful Cancer Biology training program for predoctoral fellows and postdoctoral fellows. This program reflects a major expansion of cancer research at MSSM, which has experienced 2.5-fold growth in NCI funding since initiation of this program almost a decade ago. Its leadership has extensive experience in cancer research mentoring and a well-documented commitment to graduate education and training. This NCI Training Program catalyzed the recent establishment of Cancer Biology as a formal training area within the Graduate School. The program encompasses a laboratory-based, multidisciplinary program in cancer biology with a growing and dynamic faculty. Five predoctoral trainees would continue to be supported by the training program, which has demonstrated the ability to attract and develop a cadre of outstanding PhD and MD/PhD students in cancer focused research. The postdoctoral component of this program, which is completing its first cycle, also attracts outstanding trainees. We propose to merge our more translationally focused NCI training program, which had 5 positions, with the current basic research focused component possessing 5 positions. In this renewal application, we request 8 postdoctoral positions in the first year with incremental increases to 10 training positions. This administrative consolidation should foster even greater interactions between laboratory trainees and those clinical fellows, who embark on a period of intensive laboratory research within this program. The training faculty comprises 40 preceptors from 9 departments and 4 Institutes throughout Mount Sinai. Of these faculty, 63% have peer-reviewed support from funding agencies for cancer-related studies. The curriculum for the predoctoral and postdoctoral trainees involves some common elements including advanced course work in both basic and clinical cancer biology. All trainees also participate in regular conferences, which further expose trainees to clinical aspects of cancer. There are important specific training elements for each component as well. There is a rigorous evaluation and selection process, and-the program is both cognizant of and actively involved in minority recruitment. This training program combines research in the biology of cancer with a curriculum that challenges trainees to consider how their research may be translated into improvements in the diagnosis and treatment of cancer. The trainees work closely with faculty drawn from throughout Mount Sinai ensuring that this research is both comprehensive in scope and related to practical issues faced by physicians in preventing and treating cancer.

Public Health Relevance

!: Cancer biology research within this training program is aimed at elucidating the molecular mechanisms responsible for initiation and progression of human cancer as well as research directly aimed at improving the ability to treat this terrible disease. Our training faculty has made discoveries that have led to new therapies for cancer, which is responsible for extensive morbidity and more than 560,000 expected deaths in 2008 in the United States.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA078207-14
Application #
8291409
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
1999-07-20
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
14
Fiscal Year
2012
Total Cost
$751,530
Indirect Cost
$51,264
Name
Icahn School of Medicine at Mount Sinai
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Lukin, Dana J; Carvajal, Luis A; Liu, Wen-jun et al. (2015) p53 Promotes cell survival due to the reversibility of its cell-cycle checkpoints. Mol Cancer Res 13:16-28
Papa, Luena; Hahn, Mary; Marsh, Ellen L et al. (2014) SOD2 to SOD1 switch in breast cancer. J Biol Chem 289:5412-6
Yu, Chun I; Becker, Christian; Metang, Patrick et al. (2014) Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol 193:4335-43
Duarte, Luis F; Young, Andrew R J; Wang, Zichen et al. (2014) Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat Commun 5:5210
Vardabasso, Chiara; Hasson, Dan; Ratnakumar, Kajan et al. (2014) Histone variants: emerging players in cancer biology. Cell Mol Life Sci 71:379-404
Papa, Luena; Germain, Doris (2014) SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol 34:699-710
Rudrapatna, V A; Bangi, E; Cagan, R L (2014) A Jnk-Rho-Actin remodeling positive feedback network directs Src-driven invasion. Oncogene 33:2801-6
Howarth, Deanna L; Lindtner, Claudia; Vacaru, Ana M et al. (2014) Activating transcription factor 6 is necessary and sufficient for alcoholic fatty liver disease in zebrafish. PLoS Genet 10:e1004335
Zamarin, Dmitriy; Holmgaard, Rikke B; Subudhi, Sumit K et al. (2014) Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 6:226ra32
Barnum, Kevin J; O'Connell, Matthew J (2014) Cell cycle regulation by checkpoints. Methods Mol Biol 1170:29-40

Showing the most recent 10 out of 62 publications