The Icahn School of Medicine at Mount Sinai proposes to continue a highly successful Training Program in Cancer Biology for predoctoral students and postdoctoral fellows. Its leadership has extensive experience in cancer research mentoring and a well-documented commitment to both graduate education and postrdoctoral training. This institutional program encompasses training faculty from 6 basic and 4 clinical departments as well as 12 matrix institutes and involves laboratory and computational research. The dynamic and interdisciplinary nature of the Program is evidenced by co- authored papers and and multi-investigator grants, as well as the 34% increase in training faculty since the initia application in 2013. All faculty members have peer-reviewed R01 or R01-equivalent support from funding agencies for cancer-related studies. The Program attracts and develops a cadre of outstanding Ph.D. and M.D., Ph.D. students, and postdoctoral fellows, with our earliest trainees having established cancer-focused research careers at prestigious institutions. The curriculum for predoctoral and postdoctoral trainees involves common elements including a new advanced didactic cancer biology course and advanced electives, which impart state-of-the-art training in emerging technologies critical to basic and translational cancer investigations. All trainees also participate in regular conferences, which further expose them to clinical aspects of cancer. There are important specific training elements for each component as well. There is a rigorous evaluation and selection process, and the program is both cognizant of and actively involved in diversity recruitment. New components of the program also include additional training venues to specifically aid postdoctoral trainees in seeking academic positions and a formal training faculty track in which promising junior faculty members may apply with a training faculty member to co-mentor a highly qualified trainee, an approach providing mentorship by the training faculty member both of the trainee and the faculty co-mentor. The program has contributed importantly to the remarkable increase in cancer research and NCI funding over the past decade. Mount Sinai has also made enormous commitments in resources and facilities benefitting the Program including support for specific elements by the Tisch Cancer Institute and the Department of Oncological Sciences. Trainees work closely with faculty drawn from throughout Mount Sinai ensuring that their training is both rigorous and sufficiently broad in scope to take into account practical issues faced by physicians in preventing and treating cancer.

Public Health Relevance

Cancer biology research within this institutional, multidisciplinary training program is aimed at elucidating the molecular mechanisms responsible for initiation and progression of human cancer. Translational research is also directed at improving diagnosis and therapies for this terrible disease, and our training faculty have made discoveries that have led to new cancer therapies. Both pre- and postdoctoral trainees participate in rigorous didactic as well as state-of-the-art laboratory and/or computational research training with the earliest cadre having now established academic careers in cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
2T32CA078207-16A1
Application #
8855124
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
1999-07-20
Project End
2020-08-31
Budget Start
2015-09-23
Budget End
2016-08-31
Support Year
16
Fiscal Year
2015
Total Cost
$464,142
Indirect Cost
$31,844
Name
Icahn School of Medicine at Mount Sinai
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Chung, Chi-Yeh; Sun, Zhen; Mullokandov, Gavriel et al. (2016) Cbx8 Acts Non-canonically with Wdr5 to Promote Mammary Tumorigenesis. Cell Rep 16:472-86
Troilo, Albino; Benson, Erica K; Esposito, Davide et al. (2016) Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Oncotarget 7:28765-82
Bane, Octavia; Besa, Cecilia; Wagner, Mathilde et al. (2016) Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging 43:866-76
Valle-García, David; Qadeer, Zulekha A; McHugh, Domhnall S et al. (2016) ATRX binds to atypical chromatin domains at the 3' exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics 11:398-414
Coloma, Javier; Johnson, Robert E; Prakash, Louise et al. (2016) Human DNA polymerase α in binary complex with a DNA:DNA template-primer. Sci Rep 6:23784
Lin, Su-Jiun; Tapia-Alveal, Claudia; Jabado, Omar J et al. (2016) An acetyltransferase-independent function of Eso1 regulates centromere cohesion. Mol Biol Cell 27:4002-4010
Dyvorne, Hadrien; Knight-Greenfield, Ashley; Jajamovich, Guido et al. (2015) Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 275:245-54
Lukin, Dana J; Carvajal, Luis A; Liu, Wen-jun et al. (2015) p53 Promotes cell survival due to the reversibility of its cell-cycle checkpoints. Mol Cancer Res 13:16-28
Jacob, Vinitha; Chernyavskaya, Yelena; Chen, Xintong et al. (2015) DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development 142:510-21
Reimels, Theresa A; Pfleger, Cathie M (2015) Drosophila Rabex-5 restricts Notch activity in hematopoietic cells and maintains hematopoietic homeostasis. J Cell Sci 128:4512-25

Showing the most recent 10 out of 77 publications