The Icahn School of Medicine at Mount Sinai proposes to continue a highly successful Training Program in Cancer Biology for predoctoral students and postdoctoral fellows. Its leadership has extensive experience in cancer research mentoring and a well-documented commitment to both graduate education and postrdoctoral training. This institutional program encompasses training faculty from 6 basic and 4 clinical departments as well as 12 matrix institutes and involves laboratory and computational research. The dynamic and interdisciplinary nature of the Program is evidenced by co- authored papers and and multi-investigator grants, as well as the 34% increase in training faculty since the initia application in 2013. All faculty members have peer-reviewed R01 or R01-equivalent support from funding agencies for cancer-related studies. The Program attracts and develops a cadre of outstanding Ph.D. and M.D., Ph.D. students, and postdoctoral fellows, with our earliest trainees having established cancer-focused research careers at prestigious institutions. The curriculum for predoctoral and postdoctoral trainees involves common elements including a new advanced didactic cancer biology course and advanced electives, which impart state-of-the-art training in emerging technologies critical to basic and translational cancer investigations. All trainees also participate in regular conferences, which further expose them to clinical aspects of cancer. There are important specific training elements for each component as well. There is a rigorous evaluation and selection process, and the program is both cognizant of and actively involved in diversity recruitment. New components of the program also include additional training venues to specifically aid postdoctoral trainees in seeking academic positions and a formal training faculty track in which promising junior faculty members may apply with a training faculty member to co-mentor a highly qualified trainee, an approach providing mentorship by the training faculty member both of the trainee and the faculty co-mentor. The program has contributed importantly to the remarkable increase in cancer research and NCI funding over the past decade. Mount Sinai has also made enormous commitments in resources and facilities benefitting the Program including support for specific elements by the Tisch Cancer Institute and the Department of Oncological Sciences. Trainees work closely with faculty drawn from throughout Mount Sinai ensuring that their training is both rigorous and sufficiently broad in scope to take into account practical issues faced by physicians in preventing and treating cancer.

Public Health Relevance

Cancer biology research within this institutional, multidisciplinary training program is aimed at elucidating the molecular mechanisms responsible for initiation and progression of human cancer. Translational research is also directed at improving diagnosis and therapies for this terrible disease, and our training faculty have made discoveries that have led to new cancer therapies. Both pre- and postdoctoral trainees participate in rigorous didactic as well as state-of-the-art laboratory and/or computational research training with the earliest cadre having now established academic careers in cancer research.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
Internal Medicine/Medicine
Schools of Medicine
New York
United States
Zip Code
Chernyavskaya, Yelena; Mudbhary, Raksha; Zhang, Chi et al. (2017) Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development 144:2925-2939
Pappas, Kyrie; Xu, Jia; Zairis, Sakellarios et al. (2017) p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes. Mol Cancer Res 15:1051-1062
Kalan, Sampada; Amat, Ramon; Schachter, Miriam Merzel et al. (2017) Activation of the p53 Transcriptional Program Sensitizes Cancer Cells to Cdk7 Inhibitors. Cell Rep 21:467-481
Chung, Chi-Yeh; Sun, Zhen; Mullokandov, Gavriel et al. (2016) Cbx8 Acts Non-canonically with Wdr5 to Promote Mammary Tumorigenesis. Cell Rep 16:472-486
Troilo, Albino; Benson, Erica K; Esposito, Davide et al. (2016) Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Oncotarget 7:28765-82
Valle-García, David; Qadeer, Zulekha A; McHugh, Domhnall S et al. (2016) ATRX binds to atypical chromatin domains at the 3' exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics 11:398-414
Lin, Su-Jiun; Tapia-Alveal, Claudia; Jabado, Omar J et al. (2016) An acetyltransferase-independent function of Eso1 regulates centromere cohesion. Mol Biol Cell 27:4002-4010
Coloma, Javier; Johnson, Robert E; Prakash, Louise et al. (2016) Human DNA polymerase ? in binary complex with a DNA:DNA template-primer. Sci Rep 6:23784
Bane, Octavia; Besa, Cecilia; Wagner, Mathilde et al. (2016) Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging 43:866-76
Price, Jeremy G; Idoyaga, Juliana; Salmon, Hélène et al. (2015) CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol 16:1060-8

Showing the most recent 10 out of 83 publications