Improvements in the outcome for women with breast cancer will require an emerging new breed of investigator, the translational researcher. Scientists with a strong foundation in basic molecular and cellular research who also have an understanding of the clinical disease will direct the most effective future of breast cancer research. Such investigators have been called "translational" because of their ability to translate basic findings into clinical strategies. This type of training requires both a well funded core of investigators performing basic laboratory research, and an excellent clinical training program. At Baylor College of Medicine, the Breast Center affords such a combination. This is a resubmission of competitive renewal of a Training Program begun 5 years ago which has supported 14 PhD or MD postdoctoral trainees. All trainees work on an aspect of breast cancer chosen from hormone action and therapeutic applications, growth factors, signal transduction, cell cycle control, normal.breast development, breast cancer prevention, breast cancer evolution, molecular genetics, or gene therapy. Formal didactic courses covering scientific writing and research grants, biostatistics, leadership skills, and problems in clinical translational breast cancer research are required. Progress and direction of the trainee's research project are closely monitored in weekly data reviews. Trainees also attend a weekly clinical breast cancer case conference in order to increase their understanding of clinical issues. Because of our integrative nature, and the balanced inclusion of MD and PhD mentors, the trainees have abundant opportunities to interact with their clinical counterparts for discussion of translational issues, and the majority of trainees have remained in academic research. Thus, by providing a program that involves laboratory training under the direction of well-established preceptors with a long-standing track record of breast cancer research, interaction with successful physician-scientists and exposure to clinical breast cancer issues, we have created a unique opportunity to train new translational researchers. This Program is highly relevant to the public health because there is a great need for more translational, multidisciplinary scientists to conquer the problem of breast cancer, since this disease accounts for the second most frequent cause of mortality in women in the United States.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA090221-10
Application #
8288313
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
2001-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2014-06-30
Support Year
10
Fiscal Year
2012
Total Cost
$183,921
Indirect Cost
$21,178
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
TreviƱo, Lindsey S; Bingman 3rd, William E; Edwards, Dean P et al. (2013) The requirement for p42/p44 MAPK activity in progesterone receptor-mediated gene regulation is target gene-specific. Steroids 78:542-7
Kessler, Jessica D; Kahle, Kristopher T; Sun, Tingting et al. (2012) A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335:348-53
De Amicis, Francesca; Thirugnansampanthan, Janagi; Cui, Yukun et al. (2010) Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat 121:1-11
Chen, Lu; Mayer, Julie Ann; Krisko, Tibor I et al. (2009) Inhibition of the p38 kinase suppresses the proliferation of human ER-negative breast cancer cells. Cancer Res 69:8853-61
Siwko, Stefan K; Bu, Wen; Gutierrez, Carolina et al. (2008) Lentivirus-mediated oncogene introduction into mammary cells in vivo induces tumors. Neoplasia 10:653-62, 1 p following 662
Siwko, Stefan K; Dong, Jie; Lewis, Michael T et al. (2008) Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells--implications for pregnancy-induced protection against breast cancer. Stem Cells 26:3205-9
Dearth, Robert K; Cui, Xiaojiang; Kim, Hyun-Jung et al. (2007) Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle 6:705-13
Zhang, Dong; Zaugg, Kathrin; Mak, Tak W et al. (2006) A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126:529-42
Dearth, Robert K; Cui, Xiaojiang; Kim, Hyun-Jung et al. (2006) Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 26:9302-14
Herynk, Matthew H; Fuqua, Suzanne A W (2004) Estrogen receptor mutations in human disease. Endocr Rev 25:869-98