This proposal extends for a period of five years an interdisciplinary doctoral program begun in 1992 that prepares scientists for innovative research careers in the Speech and Hearing Sciences. Training is intended to enhance markedly the leadership potential of Speech and Hearing researchers within both academia and industry. The basic premise of the program is that today's speech and hearing scientists must be fluent in a variety of physical, biological, clinical and cognitive science disciplines to achieve the multidisciplinary advances that drive innovation. The keystone of the program is a quantitative approach to understanding these four aspects of speech and hearing. The program draws upon the combined expertise of the faculties of Boston area institutions, including the Harvard Medical School and its teaching hospitals, MIT and Boston University. To date, over 140 students have entered the pre-doctoral training program, including some with independent support. These trainees have diverse undergraduate backgrounds in the physical, engineering, biological or cognitive sciences, including some with traditional speech and hearing backgrounds. Training combines coursework and research for the first 3 years after which it concentrates on thesis research, with the Ph.D. degree expected after 4 to 6 years. The coursework and research training combines a broad exposure to the many scientific disciplines relevant to speech and hearing together with a deep understanding of the student's chosen specialty. An intensive clinical exposure is the third major part of the didactic training program. Special attention is given to issues of integrity and responsible conduct of research. Virtually all of our 79 graduates are pursuing careers in health related research, and two- thirds have primary activities in the speech and hearing sciences. Many have faculty positions in basic science, engineering, and clinical departments and are successfully competing for research grants. Some are combining research careers with clinical practice in otology, audiology or speech-language pathology. Some are taking leadership roles in industries related to speech and hearing or in the broader biotechnology field where they are developing assistive devices and treatments for communication disorders. We will continue vigorous efforts to attract highly qualified students, especially from under-represented minorities.

Public Health Relevance

This innovative interdisciplinary doctoral program trains researchers in Speech and Hearing by combining broad exposure to relevant basic science and engineering disciplines, with rigorous expertise in at least one research area, and intense exposure to clinical practice. The program's graduates are taking on leadership roles in academia and industry where they work at the forefront of scientific discovery and develop novel assistive devices and remediation strategies for those affected by disorders of hearing, voice, speech, language and balance. Some are combining research careers with clinical practice in otology, audiology or speech- language pathology.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Institutional National Research Service Award (T32)
Project #
5T32DC000038-23
Application #
8672618
Study Section
Special Emphasis Panel (ZDC1)
Program Officer
Sklare, Dan
Project Start
1992-07-01
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
23
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard Medical School
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Nam, Hui; Guinan Jr, John J (2016) Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones. Hear Res 341:66-78
Mehraei, Golbarg; Hickox, Ann E; Bharadwaj, Hari M et al. (2016) Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy. J Neurosci 36:3755-64
Thompson, Lara A; Haburcakova, Csilla; Lewis, Richard F (2016) Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns. Exp Brain Res 234:3245-3257
Chhan, David; Bowers, Peter; McKinnon, Melissa L et al. (2016) Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch. Hear Res :
Bharadwaj, Hari M; Masud, Salwa; Mehraei, Golbarg et al. (2015) Individual differences reveal correlates of hidden hearing deficits. J Neurosci 35:2161-72
Dilwali, Sonam; Kao, Shyan-Yuan; Fujita, Takeshi et al. (2015) Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl Res 166:1-11
Hight, Ariel Edward; Kozin, Elliott D; Darrow, Keith et al. (2015) Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear Res 322:235-41
Kozin, Elliott D; Darrow, Keith N; Hight, Ariel E et al. (2015) Direct visualization of the murine dorsal cochlear nucleus for optogenetic stimulation of the auditory pathway. J Vis Exp :52426
Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi et al. (2015) A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation. IEEE J Solid-State Circuits 50:214-229
Merchant, Gabrielle R; Röösli, Christof; Niesten, Marlien E F et al. (2015) Power reflectance as a screening tool for the diagnosis of superior semicircular canal dehiscence. Otol Neurotol 36:172-7

Showing the most recent 10 out of 171 publications