During the past decade, we have witnessed the emergence of a new era in biology. Driven largely by advances in high-throughput technologies and computational power, biologists today can collect data and measurements on a scale and complexity level unimaginable until recently. With the new era, biology is now becoming an information and engineering science that will rely not only on the fundamental organizational principles, but also on predictive modeling. Previous efforts to attract students with diverse training backgrounds were successful, creating a multidisciplinary environment. However, the complexity of the challenges ahead will require that students integrate perspectives from different disciplines to synthesize completely new approaches, rather than working within their own silos. This process of achieving true interdisciplinary training, where the boundaries of traditional disciplines are blurred, or removed altogether, requires a new approach to graduate education. To meet this challenge, we have developed a comprehensive interdisciplinary program for training students in the understanding and engineering of complex biological systems. The Integrative Program in Complex Biological Systems (ipCBS) departs significantly from a traditional curriculum. Built on an entirely new foundation focused on the observation, modeling, and manipulation of complex biological systems, the ipCBS represents a novel approach to solve the critical sociological and linguistic problems associated with training scientists to be simultaneously conversant in the languages of biology, mathematics, physics, and engineering.

Public Health Relevance

The University of California at San Francisco is strictly a biomedical campus. Like all of our graduate training programs, the Integrated Program in Complex Biological Systems is dedicated to advancing health worldwide. The specific research programs of our trainees and their faculty are focused on a broad range of basic and applied biomedical science, ranging from drug discovery, cancer therapeutics, viral evolution, and infectious disease, to name just a few.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-E (J1))
Program Officer
Baird, Richard A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
McCarroll, Matthew N; Gendelev, Leo; Keiser, Michael J et al. (2016) Leveraging Large-scale Behavioral Profiling in Zebrafish to Explore Neuroactive Polypharmacology. ACS Chem Biol 11:842-9
Mandegar, Mohammad A; Huebsch, Nathaniel; Frolov, Ekaterina B et al. (2016) CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell 18:541-53
Greenberg, Charles H; Kollman, Justin; Zelter, Alex et al. (2016) Structure of γ-tubulin small complex based on a cryo-EM map, chemical cross-links, and a remotely related structure. J Struct Biol 194:303-10
Ramirez, Michael; Rajaram, Satwik; Steininger, Robert J et al. (2016) Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 7:10690
Mavor, David; Barlow, Kyle; Thompson, Samuel et al. (2016) Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. Elife 5:
Khankhanian, Pouya; Cozen, Wendy; Himmelstein, Daniel S et al. (2016) Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis. Int J Epidemiol 45:728-40
Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin et al. (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife 5:
Bruni, Giancarlo; Rennekamp, Andrew J; Velenich, Andrea et al. (2016) Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12:559-66
Kollman, Justin M; Greenberg, Charles H; Li, Sam et al. (2015) Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat Struct Mol Biol 22:132-7
Ó Conchúir, Shane; Barlow, Kyle A; Pache, Roland A et al. (2015) A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design. PLoS One 10:e0130433

Showing the most recent 10 out of 61 publications