During the past decade, we have witnessed the emergence of a new era in biology. Driven largely by advances in high-throughput technologies and computational power, biologists today can collect data and measurements on a scale and complexity level unimaginable until recently. With the new era, biology is now becoming an information and engineering science that will rely not only on the fundamental organizational principles, but also on predictive modeling. Previous efforts to attract students with diverse training backgrounds were successful, creating a multidisciplinary environment. However, the complexity of the challenges ahead will require that students integrate perspectives from different disciplines to synthesize completely new approaches, rather than working within their own silos. This process of achieving true interdisciplinary training, where the boundaries of traditional disciplines are blurred, or removed altogether, requires a new approach to graduate education. To meet this challenge, we have developed a comprehensive interdisciplinary program for training students in the understanding and engineering of complex biological systems. The Integrative Program in Complex Biological Systems (ipCBS) departs significantly from a traditional curriculum. Built on an entirely new foundation focused on the observation, modeling, and manipulation of complex biological systems, the ipCBS represents a novel approach to solve the critical sociological and linguistic problems associated with training scientists to be simultaneously conversant in the languages of biology, mathematics, physics, and engineering.

Public Health Relevance

The University of California at San Francisco is strictly a biomedical campus. Like all of our graduate training programs, the Integrated Program in Complex Biological Systems is dedicated to advancing health worldwide. The specific research programs of our trainees and their faculty are focused on a broad range of basic and applied biomedical science, ranging from drug discovery, cancer therapeutics, viral evolution, and infectious disease, to name just a few.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Institutional National Research Service Award (T32)
Project #
5T32EB009383-05
Application #
8444452
Study Section
Special Emphasis Panel (ZEB1-OSR-E (J1))
Program Officer
Baird, Richard A
Project Start
2009-04-01
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2013
Total Cost
$243,818
Indirect Cost
$13,071
Name
University of California San Francisco
Department
Biochemistry
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Dandekar, Sheel N; Park, Jason S; Peng, Grace E et al. (2013) Actin dynamics rapidly reset chemoattractant receptor sensitivity following adaptation in neutrophils. Philos Trans R Soc Lond B Biol Sci 368:20130008