This is a renewal submission of Advanced Training in Environmental Health Sciences requesting 2 years of support for each of 10 predoctoral trainees beginning after their first or second year in a PhD degree program. The objective of this predoctoral program is to train the next generation of environmental health scientists through interdisciplinary research and coursework that address issues of direct relevance to the NIEHS mission. Training faculty consist of 53 active researchers with substantial experience in mentoring predoctoral students. Areas of research focus in this training program are: (1) Cancer: (2) Endocrine and Metabolic Mechanisms of Toxicity;(3) Genotoxicity and Epigenetics: (4) Neurotoxicology;and (5) Respiratory Toxicology. Faculty interests and expertise overlap in these areas facilitating interaction among labs, which in turn promotes interdisciplinary approaches to studying the impact of environmental factors on human biology and disease. Trainees are recruited from several graduate groups that provide disciplinary training relevant to environmental health sciences: toxicology, exposure assessment, epidemiology, cell and molecular biology, neuroscience and pathophysiology. Trainees have access to advanced technologies, such as proteomics, genomics and metabolomics, state-of-the-art imaging, genetically modified mice, and inhalation facilities for rodents and non-human primates. A strength of environmental health training at UC Davis is the vertical integration of studies of environmentally-induced disease. Molecular, cellular, tissue and animal (including transgenic mouse) models complement nonhuman primate models, human clinical samples obtained through the UC Davis Clinical and Translational Science Center (CTSC) and epidemiological studies. The activities of various research centers (M.I.N.D. Institute, Center for Children's Environmental Health, Comprehensive Cancer Center, Western Center for Agricultural Health and Safety, Superfund Program and Center for Nanotechnology Health Implications Research) provide synergy and promote connections to disease prevention and public health. Trainees will receive training in responsible conduct of research and obtain instruction and practice in scientific writing (including proposals for extramural funding) and in communicating scientific findings (via chalk talks and participation in annual retreats and national meetings). Trainees wil also be exposed to emerging concepts and technologies in environmental health via participation in a trainee- organized and -managed seminar series that brings in leading environmental health scientists from across the country, and a summer course in which training faculty and trainees explore a current issue of relevance to environmental health with the goal of producing a joint review or white paper for publication. This training program builds on an established program with a strong track record of meeting the NIEHS mission to train the next generation of scientists to protect public health by connecting scientific advances to environmental exposures and consequent disease processes.

Public Health Relevance

This competitive renewal application proposes to continue the interdisciplinary training of the next generation of researchers in environmental health sciences. Trainees will be well prepared for diverse careers focused on identifying, understanding and/or mitigating the impacts of environmental factors on human health and disease.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Shreffler, Carol K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Veterinary Sciences
Schools of Veterinary Medicine
United States
Zip Code
Schivo, Michael; Aksenov, Alexander A; Linderholm, Angela L et al. (2014) Volatile emanations from in vitro airway cells infected with human rhinovirus. J Breath Res 8:037110
Nuttall, Johnathan R; Oteiza, Patricia I (2014) Zinc and the aging brain. Genes Nutr 9:379
Engstrom, Lisa M; Brinkmeyer, Megan K; Ha, Yang et al. (2014) A zinc linchpin motif in the MUTYH glycosylase interdomain connector is required for efficient repair of DNA damage. J Am Chem Soc 136:7829-32
Lesiak, Adam; Zhu, Mingyan; Chen, Hao et al. (2014) The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J Neurosci 34:717-25
Aksenov, Alexander A; Sandrock, Christian E; Zhao, Weixiang et al. (2014) Cellular scent of influenza virus infection. Chembiochem 15:1040-8
La Merrill, Michele; Karey, Emma; Moshier, Erin et al. (2014) Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One 9:e103337
DeGroot, Danica E; Hayashi, Ai; Denison, Michael S (2014) Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes. Arch Biochem Biophys 541:13-20
DeGroot, Danica E; Denison, Michael S (2014) Nucleotide specificity of DNA binding of the aryl hydrocarbon receptor:ARNT complex is unaffected by ligand structure. Toxicol Sci 137:102-13
Wagner, Karen; Yang, Jun; Inceoglu, Bora et al. (2014) Soluble epoxide hydrolase inhibition is antinociceptive in a mouse model of diabetic neuropathy. J Pain 15:907-14
Yang, Dongren; Kania-Korwel, Izabela; Ghogha, Atefeh et al. (2014) PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. Toxicol Sci 138:379-92

Showing the most recent 10 out of 100 publications