We at the Stanford Department of Ophthalmology and Center for Vision and Prevention of Blindness are applying for a T32 Training Grant from the National Eye Institute to fund a the post-doctoral program designed to Integrate basic vision research and clinical ophthalmologic training. Our goals include: 1) intensive clinical ophthalmologic exposure, especially targeting non-clinically trained investigators, to facilitate future bench-to-bedside applications of basic vision research;2) facilitation of the transition of M.D. and M.D.-Ph.D.-trainees from clinical practice to rigorous vision research and fostering their successful application to the Career development (K) Award, an important funding mechanism for physician-scientists;and 3) the education and training of basic and clinical investigators from diverse backgrounds in molecular, cellular, synaptic, and systems level vision research to prepare them for academic careers in clinical and basic departments. With your help, we plan to train 4 M.D., Ph.D., or M.D.-Ph.D. fellows per year. An intensive course on basic vision research and ophthalmology (Ophthalmology 302A), weekly multi-disciplinary Stanford Center for Vision and Prevention of Blindness lectures and seminars, and other vision courses and training in epidemiology and statistics will be among the educational program tailored to each trainee's background and research interest, along with annual opportunities to present their work, teach, write grant applications, and attend scientific meetings. Each trainee will be assigned a basic science and a clinical mentor, chosen from Stanford vision investigators which collectively hold 16 R0l grants from the National Eye Institute and have published over 100 peer-reviewed publications in the last 2 years. These mentors help each trainee publish basic and clinical papers, serve as examples of rigorous scientific and clinical Investigations, and help develop a well-rounded program to interweave knowledge in basic areas such as developmental patterning of the eye and visual circuitry, synaptic plasticity and processing of the visual pathway, visual object recognition and reading, and visual-motor integration with a detailed understanding of the diagnosis and treatment of common causes of low vision and blindness and tools used to address them. An External Advisory Committee offers independent perspectives on the Program's operation.

Public Health Relevance

Because our program is designed to provide each trainee with a comprehensive understanding of vision research and its applications to prevent vision loss, our trainees are poised to make significant research contributions to tackle the different causes of blindness and low vision, which affects 160 million people worldwide and costs the United States annually 35.4 billion dollars in financial burden when considering just the major adult visual disorders.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Institutional National Research Service Award (T32)
Project #
5T32EY020485-02
Application #
8018130
Study Section
Special Emphasis Panel (ZEY1-VSN (10))
Program Officer
Agarwal, Neeraj
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
2
Fiscal Year
2011
Total Cost
$162,460
Indirect Cost
Name
Stanford University
Department
Biology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Gomez, Jesse; Barnett, Michael A; Natu, Vaidehi et al. (2017) Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355:68-71
Benchorin, Gillie; Calton, Melissa A; Beaulieu, Marielle O et al. (2017) Assessment of Murine Retinal Function by Electroretinography. Bio Protoc 7:
Calton, Melissa A; Vollrath, Douglas (2016) The mTOR Kinase Inhibitor INK128 Blunts Migration of Cultured Retinal Pigment Epithelial Cells. Adv Exp Med Biol 854:709-15
Miller, Kai J; Schalk, Gerwin; Hermes, Dora et al. (2016) Spontaneous Decoding of the Timing and Content of Human Object Perception from Cortical Surface Recordings Reveals Complementary Information in the Event-Related Potential and Broadband Spectral Change. PLoS Comput Biol 12:e1004660
Natu, Vaidehi S; Barnett, Michael A; Hartley, Jake et al. (2016) Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability. J Neurosci 36:10893-10907
Taplin, AmiLyn M; de Pesters, Adriana; Brunner, Peter et al. (2016) Intraoperative mapping of expressive language cortex using passive real-time electrocorticography. Epilepsy Behav Case Rep 5:46-51
Miller, Kai J; Hermes, Dora; Witthoft, Nathan et al. (2015) The physiology of perception in human temporal lobe is specialized for contextual novelty. J Neurophysiol 114:256-63
Vollrath, Douglas; Yasumura, Douglas; Benchorin, Gillie et al. (2015) Tyro3 Modulates Mertk-Associated Retinal Degeneration. PLoS Genet 11:e1005723
Hermes, Dora; Miller, Kai J; Wandell, Brian A et al. (2015) Gamma oscillations in visual cortex: the stimulus matters. Trends Cogn Sci 19:57-8
Kim, Taeho; Vidal, George S; Djurisic, Maja et al. (2013) Human LilrB2 is a ?-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer's model. Science 341:1399-404