This predoctoral training program is dedicated to training outstanding scientists in the pharmacological sciences. A highly productive and well-funded faculty provide a broad diversity of research areas for trainees Including receptor and cell signaling mechanisms, neuropharmacology, gene therapy, mechanisms of cancer, mechanisms of antibiotic resistance, genome sciences, biosensors and cell imaging, bioinformatics and computational biology, chemical biology and high throughput drug discovery, and structural biology. Students previously were directly admitted into the Department of Pharmacology graduate program or joined through several small umbrella programs. In 2008, the 12 degree-granting departments/curricula In the School of Medicine, together with the Chemistry, Biology, and Medicinal Chemistry departments in the College of Liberal Arts &Sciences and School of Pharmacy, formed an admissions portal/first year program named the Biological and Biomedical Sciences Program (BBSP). This umbrella program now oversees recruitment and first year training of graduate students in the biomedical sciences. In its first year, the BBSP brought in 113 students, 21 of which are underrepresented minorities. Students carry out three research rotations, take basic first year courses, and, at the end of their first year, choose a mentor and degree- granting program for their thesis research. Students joining the Pharmacological Sciences training program choose from 46 core faculty for their dissertation research. A very strong Medical Scientist Training Program (MD/Ph.D.) also brings in ~6-8 students per year, 1-3 of which join the Pharmacological Sciences Training Program. The pharmacological sciences training program consists of formal courses, seminar courses focusing on scientific communication skills, and original doctoral research. Basic courses in cell biology or neurobiology, introductory and advanced courses in pharmacology and physiology, and elective specialized courses are required and are taken in the first and second years. Quantitative skills are developed through strong emphasis on biostatistics, biocomputation, and ligand-receptor binding theory and analysis. Seminar courses and a departmental student/postdoctoral fellow seminar series provide students with many opportunities to hone their research presentation skills and gain confidence in public speaking. A robust advisory system oversees the thesis research years of students, and the average duration of training is 5.1 years.

Public Health Relevance

Students who complete this predoctoral training program will have acquired basic knowledge of pharmacology and related fields, in-depth knowledge of an important area of biomedical research, skill in planning and executing a valuable research project in the pharmacological sciences, and exceptional ability to analyze, interpret and communicate results. These skills provide a sound basis for scientific careers in academia, government, or industry.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Sinnott, Rebecca; Winters, Leah; Larson, Brittany et al. (2014) Mechanisms promoting escape from mitotic stress-induced tumor cell death. Cancer Res 74:3857-69
White, Kate L; Scopton, Alex P; Rives, Marie-Laure et al. (2014) Identification of novel functionally selective *-opioid receptor scaffolds. Mol Pharmacol 85:83-90
Neel, Nicole F; Stratford, Jeran K; Shinde, Vaishali et al. (2014) Response to MLN8237 in pancreatic cancer is not dependent on RalA phosphorylation. Mol Cancer Ther 13:122-33
Wang, Edina C; Sinnott, Rebecca; Werner, Michael E et al. (2014) Differential cell responses to nanoparticle docetaxel and small molecule docetaxel at a sub-therapeutic dose range. Nanomedicine 10:321-8
Kovarik, Michelle L; Ornoff, Douglas M; Melvin, Adam T et al. (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85:451-72
Ornoff, D M; Wang, Y; Allbritton, N L (2013) Characterization of freestanding photoresist films for biological and MEMS applications. J Micromech Microeng 23:
Gentry, Leanna R; Martin, Timothy D; Der, Channing J (2013) Mechanisms of targeted therapy resistance take a de-TOR. Cancer Cell 24:284-6
Jordan, Nicole Vincent; Prat, Aleix; Abell, Amy N et al. (2013) SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol 33:3011-25
Kovarik, Michelle L; Gach, Philip C; Ornoff, Douglas M et al. (2012) Micro total analysis systems for cell biology and biochemical assays. Anal Chem 84:516-40
Duncan, James S; Whittle, Martin C; Nakamura, Kazuhiro et al. (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149:307-21

Showing the most recent 10 out of 34 publications