This application is for a Training Program in the Pharmacological Sciences to support nine outstanding pre- doctoral students who will be working for a Ph.D. in the Departments of Pharmacology, Chemistry, Biochemistry &Molecular Genetics, Molecular Physiology &Biological Physics or Microbiology. Their research emphasis will be on scientific problems relevant to the biochemical and physiological effects of drugs and their mechanisms of action. The trainees will be selected primarily from among students entering the University of Virginia via the Molecular Medicine umbrella program and secondarily from students enrolled in the Medical Scientist Training Program or the Department of Chemistry who are receiving training in problems of pharmacologic relevance. The 35 faculty mentors are drawn from the Departments listed above as well as the Department of Medicine with an emphasis on individuals who collaborate with Pharmacology Department faculty. These faculty all direct robust research programs and collectively have trained hundreds of students and fellows. The academic units participating in this program are well equipped to provide state of the art re- search training in their respective disciplines. In addition, core facilities for advanced technologies such as small animal imaging, gene chip/microarrays, mass spectrometry, cell sorting, confocalimaging, computational support, etc.are available for enhancement of the research training of participating students. The goal of this Training Program is to prepare selected individuals for careers in basic research and teaching relevant to problems of pharmacologic importance.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007055-37
Application #
8103867
Study Section
Special Emphasis Panel (ZGM1-BRT-5 (TG))
Program Officer
Okita, Richard T
Project Start
1985-07-01
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
37
Fiscal Year
2011
Total Cost
$286,356
Indirect Cost
Name
University of Virginia
Department
Pharmacology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Olmez, Inan; Brenneman, Breanna; Xiao, Aizhen et al. (2017) Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clin Cancer Res 23:6958-6968
Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B et al. (2017) A quantized mechanism for activation of pannexin channels. Nat Commun 8:14324
Taddeo, Evan P; Hargett, Stefan R; Lahiri, Sujoy et al. (2017) Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3. Sci Rep 7:127
Tan, Su-Fern; Pearson, Jennifer M; Feith, David J et al. (2017) The emergence of acid ceramidase as a therapeutic target for acute myeloid leukemia. Expert Opin Ther Targets 21:583-590
Taniguchi, Kenichiro; Anderson, Anoush E; Melhuish, Tiffany A et al. (2017) Genetic and Molecular Analyses indicate independent effects of TGIFs on Nodal and Gli3 in neural tube patterning. Eur J Hum Genet 25:208-215
Franks, Caroline E; Campbell, Sean T; Purow, Benjamin W et al. (2017) The Ligand Binding Landscape of Diacylglycerol Kinases. Cell Chem Biol 24:870-880.e5
Keller 4th, T C Stevenson; Butcher, Joshua T; Broseghini-Filho, Gilson BrĂ¡s et al. (2016) Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (Hb?X). Hypertension 68:1494-1503
Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai et al. (2015) CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy. Genes Dev 29:1535-51
Rosenfeld, Sam M; Perry, Heather M; Gonen, Ayelet et al. (2015) B-1b Cells Secrete Atheroprotective IgM and Attenuate Atherosclerosis. Circ Res 117:e28-39
Shu, Xiaohong; Keller 4th, T C Stevenson; Begandt, Daniela et al. (2015) Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 72:4561-75

Showing the most recent 10 out of 56 publications