The Curriculum in Genetics and Molecular Biology (the Genetics Curriculum) is a well-established and highly-ranked interdepartmental PhD program at the University of North Carolina at Chapel Hill (UNC-CH). Throughout the 50-year life of the program we have provided diverse and cutting-edge research opportunities to trainees. In addition to our ongoing expertise in key areas in genetics (e.g., genetics of model microbes, plants, and animals) and molecular biology (e.g., signal transduction, gene expression, and virology), we have added strengths in epigenetics, clinical and translational genetics, systems genetics, quantitative genetics, computational genetics, and genomics. Extensive interaction between researchers in diverse areas is promoted by the interdepartmental and inter-school nature of the Genetics Curriculum and many faculty centers, and is facilitated by the physical proximity of the different units, all of which are on the same campus. We strive to maintain a modern and innovative training program. The curriculum includes features common in similar programs, like coursework, written and oral qualifying exams, seminars, and retreats. Several years ago we introduced an innovative feature wherein selection of student and postdoctoral speakers for the annual Genetics Scientific Retreat are made by a mock study section at which training grant-appointed students score and discuss submitted abstracts. We've also innovated in coursework by transitioning to focused, modular courses that meet for a third of a semester and can be taken a la carte. This gives students greater flexibility choosing the most appropriate topics of study and allows faculty to teach withi their areas of greatest expertise. We now partner with the Department of Biology to expand teaching assistantship opportunities to include undergraduate courses at the introductory and advanced levels. The Office of Graduate Education has developed unique programs that enhance the training experience and promote career development. We compete nationally for the top students and have successfully recruited a diverse group, with about 25% belonging to one of the NIH-defined diversity groups. Our students are successful in obtain competitive external funding, and every student publishes at least one first-authored research paper in a peer-reviewed journal (the mean is almost 4 publications). The vast majority of our students remain in scientific careers after they graduate. Most initially do postdoctoral research in academia, government labs, or private research foundations. Some remain in academic/government research, but others go into private corporations, science teaching, or science policy.

Public Health Relevance

Genetics and genomics are among the most important fields in basic biomedical research, contributing to essentially all medical applications. The Curriculum in Genetics and Molecular Biology is a highly-ranked doctoral program that trains students broadly in these fields; this proposal seeks to continue NIH support for training these students for a careers and academic, government, and private research, clinical settings, teaching, and other scientific fields.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007092-44
Application #
9517956
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Bender, Michael T
Project Start
1975-07-01
Project End
2020-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
44
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Schaefer, Kristina N; Bonello, Teresa T; Zhang, Shiping et al. (2018) Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 14:e1007339
Penke, Taylor J R; McKay, Daniel J; Strahl, Brian D et al. (2018) Functional Redundancy of Variant and Canonical Histone H3 Lysine 9 Modification in Drosophila. Genetics 208:229-244
Kirk, Jessime M; Kim, Susan O; Inoue, Kaoru et al. (2018) Functional classification of long non-coding RNAs by k-mer content. Nat Genet 50:1474-1482
Tegowski, Matthew; Baldwin, Albert (2018) Noncanonical NF-?B in Cancer. Biomedicines 6:
Chiarella, Anna M; Quimby, Austin L; Mehrab-Mohseni, Marjan et al. (2018) Cavitation Enhancement Increases the Efficiency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications. Biochemistry 57:2756-2761
Bonello, Teresa T; Perez-Vale, Kia Z; Sumigray, Kaelyn D et al. (2018) Rap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment. Development 145:
Keith, Benjamin P; Barrow, Jasmine B; Toyonaga, Takahiko et al. (2018) Colonic epithelial miR-31 associates with the development of Crohn's phenotypes. JCI Insight 3:
Liu, Yong; Leslie, Patrick L; Jin, Aiwen et al. (2018) p32 regulates ER stress and lipid homeostasis by down-regulating GCS1 expression. FASEB J 32:3892-3902
Brady, Morgan M; McMahan, Susan; Sekelsky, Jeff (2018) Loss of Drosophila Mei-41/ATR Alters Meiotic Crossover Patterning. Genetics 208:579-588
Armstrong, Robin L; Penke, Taylor J R; Strahl, Brian D et al. (2018) Chromatin conformation and transcriptional activity are permissive regulators of DNA replication initiation in Drosophila. Genome Res 28:1688-1700

Showing the most recent 10 out of 266 publications