The purpose of Washington University's Medical Scientist Training Program is to provide in-depth training in the techniques of modern biomedical research and clinical medicine for individuals who wish to pursue careers as physician-scientists in academic settings. Research training is carried out in the interdisciplinary graduate programs of the Department of Biomedical Engineering and the Division of Biology and Biomedical Sciences, and the Departments of Anthropology and Physics. The basic components of the MSTP are: 1) two years of the preclinical medical school curriculum;2) coursework in a biomedically-relevant discipline;3) three or more years of original hypothesis-driven research leading to a doctoral thesis;and 4) 15-24 months of clinical training. The M.D. and Ph.D. degrees are awarded jointly at the successful completion of these components. Upon completion of postgraduate training, MSTP alumni will be prepared to enter the workforce as physician-scientists. The vast majority of alumni will join the faculty of the nation's medical schools, where they will treat patients, teach and conduct cutting-edge research that has relevance to human health and disease. Others will contribute to the biomedical research enterprise from positions in government labs, biotech firms and the pharmaceutical industry. We seek renewal of the National Research Service Award-Medical Scientist (T32 GM07200) to provide critical support for the training of physician-scientists. We propose to appoint 55 students annually to this grant for 36 months of support each. The remainder of the students'training will be supported by funds available to Washington University. Our goal is to graduate 20-25 MSTP students each year over the period of this grant.

Public Health Relevance

Washington University's MSTP trains future physician-scientists for careers in academic medicine, where they treat patients, teach medical students, and conduct cutting-edge research that improves human health and eradicates disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007200-39
Application #
8508941
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Preusch, Peter C
Project Start
1975-07-01
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
39
Fiscal Year
2013
Total Cost
$2,184,801
Indirect Cost
$93,393
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Zhang, William B; Sinha, Drew B; Pittman, William E et al. (2016) Extended Twilight among Isogenic C. elegans Causes a Disproportionate Scaling between Lifespan and Health. Cell Syst 3:333-345.e4
Gish, Stacey R; Maier, Ezekiel J; Haynes, Brian C et al. (2016) Computational Analysis Reveals a Key Regulator of Cryptococcal Virulence and Determinant of Host Response. MBio 7:e00313-16
Olfson, E; Saccone, N L; Johnson, E O et al. (2016) Rare, low frequency and common coding variants in CHRNA5 and their contribution to nicotine dependence in European and African Americans. Mol Psychiatry 21:601-7
Schill, Ellen Merrick; Lake, Jonathan I; Tusheva, Olga A et al. (2016) Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 409:473-88
Kormpakis, Ioannis; Linderman, Stephen W; Thomopoulos, Stavros et al. (2016) Enhanced Zone II Flexor Tendon Repair through a New Half Hitch Loop Suture Configuration. PLoS One 11:e0153822
Siegel, Joshua Sarfaty; Ramsey, Lenny E; Snyder, Abraham Z et al. (2016) Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci U S A 113:E4367-76
Luderer, Micah John; Muz, Barbara; de la Puente, Pilar et al. (2016) A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma. Pharm Res 33:2530-9
Planer, Joseph D; Peng, Yangqing; Kau, Andrew L et al. (2016) Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534:263-6
Ruhland, Megan K; Loza, Andrew J; Capietto, Aude-Helene et al. (2016) Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 7:11762
Zhang, William B; Pincus, Zachary (2016) Predicting all-cause mortality from basic physiology in the Framingham Heart Study. Aging Cell 15:39-48

Showing the most recent 10 out of 343 publications