The Molecular Biosciences Training Grant (MBTG) Program at the University of Wisconsin-Madison supports and enhances the training of predoctoral students who aspire to become research leaders in the cellular, biochemical, and molecular sciences. The MBTG Program has selected a strong cadre of 94 nationally recognized trainers from 26 different departments to mentor trainees. Trainees are selected each year from an outstanding pool of over 500 training grant-eligible applicants to top-ranked campus Ph.D. programs, including the Integrated Program in Biochemistry, Cellular and Molecular Biology, and Microbiology. The MBTG Program provides trainees with early and intensive orientation and advising, expanded lab rotation opportunities, and support for intellectual and professional development. Interdisciplinary training is promoted by a broad core curriculum and a weekly seminar series. The MBTG Program also provides instruction in appropriate scientific conduct, progress tracking, and career advising. In its 35 year history, the MBTG Program has enhanced the training of well over 500 graduate students, many of whom have become leaders in academia, industry and government laboratories, and non-profit organizations. We currently have 62 trainees, 34 of whom are supported on training grant funds at any one time. The MBTG Program is directed by a dedicated Steering Committee consisting of six trainers, two trainees, and a program administrator. The Ph.D. programs that contribute students to the MBTG Program receive substantial support from the university in the form of recruiting funds and fellowships for underrepresented minority candidates. The UW campus continually improves our state-of-the-art facilities for biosciences research, which directly benefits MBTG trainees and trainers. This effort assures UW-Madison's continued eminence in biomedical research. To capitalize on the expanding research infrastructure and trainer pool, we request a gradual increase of funded positions from the current 34 to 40 by the year 2015.

Public Health Relevance

The enormous potential of biomedical research to improve the quality of life and reduce the cost of healthcare for the people of this and other countries can only be realized by increasing the quality, diversity and size of the pool of trained researchers, which is the direct goal of the MBTG Program.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007215-39
Application #
8692793
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
1975-07-01
Project End
2016-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
39
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Madison
State
WI
Country
United States
Zip Code
53715
McDonald, Bradon R; Currie, Cameron R (2017) Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces. MBio 8:
Mortimer, Tatum D; Annis, Douglas S; O'Neill, Mary B et al. (2017) Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus. mSphere 2:
Tancos, Matthew A; Lowe-Power, Tiffany M; Peritore-Galve, F Christopher et al. (2017) Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens. Mol Plant Pathol :
Vincent, William J B; Harvie, Elizabeth A; Sauer, John-Demian et al. (2017) Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection. PLoS One 12:e0179574
Moncla, Louise H; Weiler, Andrea M; Barry, Gabrielle et al. (2017) Within-Host Evolution of Simian Arteriviruses in Crab-Eating Macaques. J Virol 91:
Hoang, Trish T; Raines, Ronald T (2017) Molecular basis for the autonomous promotion of cell proliferation by angiogenin. Nucleic Acids Res 45:818-831
Frankel, E B; Shankar, Raakhee; Moresco, James J et al. (2017) Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos. Nat Commun 8:1439
Robinson, Anne E; Thomas, Nathan E; Morrison, Emma A et al. (2017) New free-exchange model of EmrE transport. Proc Natl Acad Sci U S A 114:E10083-E10091
Devault, Alison M; Mortimer, Tatum D; Kitchen, Andrew et al. (2017) A molecular portrait of maternal sepsis from Byzantine Troy. Elife 6:
Frankel, E B; Audhya, Anjon (2017) ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol :

Showing the most recent 10 out of 651 publications