This proposal is for continuing support of the pre-doctoral training grant to the Department of Biology at the Massachusetts Institute of Technology (MIT). This training grant (coming up on year 34) continues to be the most important source of support for graduate students studying biological science at MIT. The mission of this Graduate Program is to train the next generation of biological/biomedical scientists, many of whom will be innovators and leaders in research and education. Specifically, in this training program we strive to educate our students: to deeply understand the fundamental underlying principles of modern biology including genetics, biochemistry, cell biology, molecular biology and quantitative data analysis;to be ethical decision makers;to face the rapidly changing modern scientific landscape;to become creative, effective, rigorous researchers;and to become excellent teachers and mentors of younger students. We seek out, recruit and train excellent students from majority, underrepresented minority, and disadvantaged populations, and help them initiate successful research careers. A key feature of our training program is an intensive, focused curriculum required of all first semester students. During this semester, students work together in courses taught by dedicated faculty in lecture and discussion-style to master a fundamental toolbox of approaches that are the underpinning of all modern molecular biological science. New features of the program include a required course in quantitative and computational biology and a writing tutorial on the preparation of research proposals. The training program ensures that students are exposed to all research groups in the Department before choosing their three lab rotations, ensuring that they are well prepared to make the critical choice of a thesis lab. Responsible conduct in research is taught in three phases, including an intense mini-course for 2nd year students. The progress and completion of thesis research is carefully monitored by regular thesis committees meetings and by the Graduate Committee. Our students perform research of outstanding quality and most students go on to careers in biomedical research. Many of our former trainees are now leaders in their chosen fields.

Public Health Relevance

Key to Combating the complex problems plaguing human health are scientists rigorously trained in the fundamental aspects of molecular and cellular biology, in ethical and humane decision-making, and exposed to the problems of modern medicine. Our program strives for excellence in all these areas. Our program is the major source of graduate students to the Koch Institute of Integrative Cancer Research and many other laboratories whose research has a direct impact on human health and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007287-37
Application #
8102021
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
1975-07-01
Project End
2015-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
37
Fiscal Year
2011
Total Cost
$2,008,050
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Romer, Katherine A; de Rooij, Dirk G; Kojima, Mina L et al. (2018) Isolating mitotic and meiotic germ cells from male mice by developmental synchronization, staging, and sorting. Dev Biol 443:19-34
Wesselhoeft, R Alexander; Kowalski, Piotr S; Anderson, Daniel G (2018) Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9:2629
Sabari, Benjamin R; Dall'Agnese, Alessandra; Boija, Ann et al. (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:
Phizicky, David V; Berchowitz, Luke E; Bell, Stephen P (2018) Multiple kinases inhibit origin licensing and helicase activation to ensure reductive cell division during meiosis. Elife 7:
Fessenden, Timothy B; Duong, Ellen; Spranger, Stefani (2018) A team effort: natural killer cells on the first leg of the tumor immunity relay race. J Immunother Cancer 6:67
Yu, Zhou; Surface, Lauren E; Park, Chong Yon et al. (2018) Identification of a transporter complex responsible for the cytosolic entry of nitrogen-containing bisphosphonates. Elife 7:
Wyant, Gregory A; Abu-Remaileh, Monther; Frenkel, Evgeni M et al. (2018) NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360:751-758
Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby et al. (2018) Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism. Cell Rep 23:349-360
Tillman, Erik J; Richardson, Claire E; Cattie, Douglas J et al. (2018) Endoplasmic Reticulum Homeostasis Is Modulated by the Forkhead Transcription Factor FKH-9 During Infection of Caenorhabditis elegans. Genetics 210:1329-1337
Entova, Sonya; Billod, Jean-Marc; Swiecicki, Jean-Marie et al. (2018) Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds. Elife 7:

Showing the most recent 10 out of 262 publications