The proposed goal of the Medical Scientist Training Program grant is to produce the next generation of physician scientists who have the skills and experience to move medical science in a positive and significant direction. We plan to continue training students in both clinical medicine and basic science with a very strong foundation in both areas. Students will fulfill an entire medical school educational curriculum including caring for and treating patients in the hospital and clinic. In a full PhD program, they will also learn t plan and carry out research that will delve deeply into the scientific basis of disease and find new, innovative therapies. Our graduates will learn from outstanding mentors in medicine and science to play a key role in the translation of scientific findings to clinical research. They wil be uniquely qualified to be the leaders of medical science.

Public Health Relevance

The Medical Scientist Training Program at Columbia is designed to train the leaders of medical research in the years to come. A strong medical and scientific foundation and background is essential to prepare for an ever-changing scientific frontier. Our program provides this education.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007367-39
Application #
8690855
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Preusch, Peter
Project Start
1976-11-01
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
39
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Pathology
Type
Schools of Medicine
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10032
Kanner, Scott A; Morgenstern, Travis; Colecraft, Henry M (2017) Sculpting ion channel functional expression with engineered ubiquitin ligases. Elife 6:
Kumar, Brahma V; Ma, Wenji; Miron, Michelle et al. (2017) Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. Cell Rep 20:2921-2934
Choi, Philip H; Vu, Thu Minh Ngoc; Pham, Huong Thi et al. (2017) Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci U S A 114:E7226-E7235
Madubata, Chioma J; Roshan-Ghias, Alireza; Chu, Timothy et al. (2017) Identification of potentially oncogenic alterations from tumor-only samples reveals Fanconi anemia pathway mutations in bladder carcinomas. NPJ Genom Med 2:29
Granot, Tomer; Senda, Takashi; Carpenter, Dustin J et al. (2017) Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life. Immunity 46:504-515
Simon, Christian M; Dai, Ya; Van Alstyne, Meaghan et al. (2017) Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep 21:3767-3780
Abate, Francesco; da Silva-Almeida, Ana C; Zairis, Sakellarios et al. (2017) Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci U S A 114:764-769
Nish, Simone A; Zens, Kyra D; Kratchmarov, Radomir et al. (2017) CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med 214:39-47
Gabryszewski, Stanislaw J; Dhingra, Satish K; Combrinck, Jill M et al. (2016) Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathog 12:e1005976
Sheth, Ravi U; Cabral, Vitor; Chen, Sway P et al. (2016) Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends Genet 32:189-200

Showing the most recent 10 out of 136 publications