The Genetics and Molecular Biology (GMB) Training Program at Princeton University has as its primary goal the education of carefully selected individuals for the research, teaching, and industrial needs of this country. The GMB program is the major source of training funds for the Molecular Biology Graduate Program, which has a 53-member training faculty who are currently mentoring 147 graduate students, 98 postdoctoral fellows, and 142 undergraduate majors. We receive approximately 350 applications to our program per year and are successful in attracting some of the best students in the country. Our program is multi-disciplinary and highly collaborative. In addition to 36 training faculty from the Department of Molecular Biology, the Graduate Program includes 5 faculty from Chemistry, 5 from Chemical &Biological Engineering, 3 from Ecology &Evolutionary Biology, 2 from Computer Science, and 2 from Physics. Some of the faculty are also members of the Princeton Neuroscience Institute or the Lewis-Sigler Institute for Integrative Genomics. The faculty provides expertise in a wide range of biological systems and offers training in biochemistry, biophysics, cancer, cell biology, computation &modeling, development, evolution, genetics, genomics, microbiology &virology, neuroscience, and structural biology. Research is performed in well-equipped laboratories with support from state-of-the-art core facilities in the department. The training program consists of formal course work, laboratory rotations, a general exam for PhD candidacy, thesis research, and a diverse array of special activities. In addition, trainees gain teaching experience and receive broad training in responsible conduct of research at different stages of the program. In year one, individual planning is emphasized to help each student select courses and lab rotations that fit his or her intellectual interests and to assist students in identifying an appropriate thesis advisor. We have developed a Diversity Program that has been highly successful in identifying and recruiting under-represented students. As part of our diversity initiative, we have developed mentoring and enrichment activities that benefit all students, and we monitor and assess the progress of students'thesis research throughout their tenure in the program. Evaluation of the program involves faculty and students and helps us to identify the need for new courses, policies, and activities that keep the program fresh. The success of our program is best judged by the success of our graduates, more than 95% of whom are actively engaged in science-related careers.

Public Health Relevance

The Genetics and Molecular Biology Training Program at Princeton University trains graduate students for careers in biomedical research, teaching, and related fields. Research projects directed by program faculty train PhD students in many areas related to human health including reproduction and development, infectious disease, cancer, and aging.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM007388-37A1
Application #
8551038
Study Section
Special Emphasis Panel (TWD)
Program Officer
Carter, Anthony D
Project Start
1977-07-01
Project End
2018-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
37
Fiscal Year
2013
Total Cost
$1,116,364
Indirect Cost
$53,064
Name
Princeton University
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Smith, Jean A; Rose, Mark D (2016) Kel1p Mediates Yeast Cell Fusion Through a Fus2p- and Cdc42p-Dependent Mechanism. Genetics 202:1421-35
Barr, Justinn; Yakovlev, Konstantin V; Shidlovskii, Yulii et al. (2016) Establishing and maintaining cell polarity with mRNA localization in Drosophila. Bioessays 38:244-53
Winer, Benjamin Y; Ploss, Alexander (2016) Breaking the species barrier for hepatitis delta virus. Hepatology 63:334-6
Thandar, Mya; Lood, Rolf; Winer, Benjamin Y et al. (2016) Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 60:2671-9
Mahoney, Tara F; Ricci, Dante P; Silhavy, Thomas J (2016) Classifying β-Barrel Assembly Substrates by Manipulating Essential Bam Complex Members. J Bacteriol 198:1984-92
King, Matthew; Petry, Sabine (2016) Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy. Methods Mol Biol 1413:77-85
Hwangbo, Dae-Sung; Biteau, Benoit; Rath, Sneha et al. (2016) Control of apoptosis by Drosophila DCAF12. Dev Biol 413:50-9
Winer, Benjamin Y; Ding, Qiang; Gaska, Jenna M et al. (2016) In vivo models of hepatitis B and C virus infection. FEBS Lett 590:1987-99
Lum, Krystal K; Cristea, Ileana M (2016) Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev Proteomics 13:325-40
Douam, Florian; Gaska, Jenna M; Winer, Benjamin Y et al. (2015) Genetic Dissection of the Host Tropism of Human-Tropic Pathogens. Annu Rev Genet 49:21-45

Showing the most recent 10 out of 121 publications