The University of Colorado Denver | Anschutz Medical Campus (UCD|AMC) Pharmacology Graduate Training Program, currently in its 34th year of NIGMS funding, requests annual support for nine predoctoral students during the next five years. This Graduate Training Program distinguishes itself by providing a highly interactive environment, on a new health sciences campus, in which students can obtain a broadly based integrative perspective on science, training in the foundation of knowledge that defines pharmacology, and sophistication in specialized, state-of-the-art areas of research. The Principle Investigator for the Training Grant is Dr. Andrew Thorburn, Chair of the Department of Pharmacology. The Training Program Director is Dr. David Port, who also chairs the Graduate Training Committee (GTC), which provides the day-to-day oversight for this Training Program. The 39 members of the Training Program faculty are drawn both from within and from outside of the School of Medicine Department of Pharmacology, and have been recruited to provide broad, multidisciplinary training opportunities in neuropharmacology, cell signaling and trafficking, molecular pharmacology, pharmacogenetics, cancer biology, genomics, proteomics, lipidomics, biomolecular structure, bioinformatics, as well as translational pharmacology. The Training Program faculty are all accomplished, committed researchers and mentors with significant extramural funding. The sources of students entering this Training Program include direct applicants to the Program, as well as students who transition from Graduate School 'feeder'programs (Biomedical Sciences and Medical Scientist Training Programs). Hallmarks of the Program are a comprehensive didactic component, three laboratory rotations, a strong emphasis on student presentations in seminar settings, and a wide choice of thesis research options Career development in the pharmacological sciences and student initiative are also emphasized. Since its last review, 22 students (from a total of 47) have been supported by this Training Grant, of which ~9 percent came from under-represented populations. The Training Program currently has 16 students. Since 2008, 21 trainees have graduated with Ph.D. degrees in just over five years, on average. The competitiveness of the students for individual national fellowships, high quality publications in peer-reviewed journals and invitations to participate in national meetings are all measures by which the successful training of the students is gauged. Additionally, the retention of the graduates in academic, industry and government positions is another measure of the success of the Training Program. With renewal of funding, this Training Program will continue to thrive and meet the national demands for individuals, trained as pharmacologists, who are individually astute researchers, can be multidisciplinary research team members, and also have the breadth of knowledge to plan and communicate effectively across a spectrum of technologies.

Public Health Relevance

The primary objective of this Training Grant is to facilitate the education and training of the next generation of research scientists in the discipline of pharmacology, which seeks to understand how the use of chemical and biological can affect biological systems and mitigate disease. Students in the Pharmacology Training Program investigate basic mechanisms and therapeutic approaches associated with numerous important public health issues including: neurological and psychiatric disorders, cancer, immunology, microbiology, and cardiovascular medicine. Trainees are taught the process of scientific thought and its communication in both oral and written forms.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Medicine
United States
Zip Code
Sinnen, Brooke L; Bowen, Aaron B; Forte, Jeffrey S et al. (2017) Optogenetic Control of Synaptic Composition and Function. Neuron 93:646-660.e5
Hiester, Brian G; Bourke, Ashley M; Sinnen, Brooke L et al. (2017) L-Type Voltage-Gated Ca2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites. Cell Rep 21:2134-2146
Mulcahy Levy, Jean M; Zahedi, Shadi; Griesinger, Andrea M et al. (2017) Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. Elife 6:
Yang, Yimu; Haeger, Sarah M; Suflita, Matthew A et al. (2017) Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution. Am J Respir Cell Mol Biol 56:727-737
Hsu, Jessica Y; Sikora, Matthew J (2017) CRISPR Fish Reel in Novel Roles for Estrogen Receptors in Reproduction. Endocrinology 158:2082-2083
Huang, Weize; Nakano, Mariko; Sager, Jennifer et al. (2017) Physiologically Based Pharmacokinetic Model of the CYP2D6 Probe Atomoxetine: Extrapolation to Special Populations and Drug-Drug Interactions. Drug Metab Dispos 45:1156-1165
Amory, J K; Ostrowski, K A; Gannon, J R et al. (2017) Isotretinoin administration improves sperm production in men with infertility from oligoasthenozoospermia: a pilot study. Andrology 5:1115-1123
Schuetze, Katherine B; Stratton, Matthew S; Blakeslee, Weston W et al. (2017) Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts. J Pharmacol Exp Ther 361:140-150
Bowen, Aaron B; Bourke, Ashley M; Hiester, Brian G et al. (2017) Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines. Elife 6:
Colbert, James F; Ford, Joshay A; Haeger, Sarah M et al. (2017) A model-specific role of microRNA-223 as a mediator of kidney injury during experimental sepsis. Am J Physiol Renal Physiol 313:F553-F559

Showing the most recent 10 out of 64 publications