This is a competitive renewal application to support the Genetics/Developmental Biology Training Program at Stanford University. The funding will support the 30""""""""'through 35""""""""'years of this long-standing program that trains graduate students to become independent researchers and teachers. This highly-successful program is comprised of 16 Ph.D. students at any given time, who work in the laboratories of 42 participating faculty members in the Departments of Genetics and Developmental Biology. Research opportunities abound in using genetics, genomics, molecular and cell biology tools to study a wide range of problems in modern biology, including developmental biology, genomic sciences, computational biology, including comparative sequencing and analysis, functional genomics, DNA, protein, and carbohydrate microarray technologies, algorithm development, statistical genetics, high-throughput genotyping and genetic analysis, evolutionary genomics, pharmacogenetics, human population genetics, and many other biological problems that benefit from a broad multidisciplinary perspective. Many projects involve development of new wet-lab as well as computational technologies and tools. Emphases of the G/DB Training Program will be to provide a broad interdisciplinary education to a wide range of Trainees, to serve to coordinate research and training activities throughout the entire campus, and to help disseminate modern biological science by preparing Trainees for the next steps in their careers. In addition to providing this training, the Genetics/Developmental Biology Training Program, in collaboration with another major program that involves most of the laboratories in the two departments, will have an ambitious program for the Minority Action Plan and education outreach. The MAP and outreach components, which are already very strong on the Stanford campus, will expand and ensure the success of our efforts to help increase diversity in our scientific ranks while also providing younger students and the general public with knowledge about science and scientists and how these impact their daily lives.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Haynes, Susan R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Silas, Sukrit; Makarova, Kira S; Shmakov, Sergey et al. (2017) On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. MBio 8:
Martin, Alicia R; Gignoux, Christopher R; Walters, Raymond K et al. (2017) Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am J Hum Genet 100:635-649
San Martín, Álvaro; Rodriguez-Aliaga, Piere; Molina, José Alejandro et al. (2017) Knots can impair protein degradation by ATP-dependent proteases. Proc Natl Acad Sci U S A 114:9864-9869
Cheng, Mei-Hsin; Andrejka, Laura; Vorster, Paul J et al. (2017) The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis. Biol Open 6:967-978
Hilton, Hugo G; McMurtrey, Curtis P; Han, Alex S et al. (2017) The Intergenic Recombinant HLA-B?46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Rep 19:1394-1405
Morgens, David W; Wainberg, Michael; Boyle, Evan A et al. (2017) Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat Commun 8:15178
Perez, Adam M; Mann, Thomas H; Lasker, Keren et al. (2017) A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity. MBio 8:
Kadoch, Cigall; Williams, Robert T; Calarco, Joseph P et al. (2017) Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet 49:213-222
Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R et al. (2017) Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc Natl Acad Sci U S A 114:6675-6684
Fu, Becky Xu Hua; Wainberg, Michael; Kundaje, Anshul et al. (2017) High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences. Genetics 206:1727-1738

Showing the most recent 10 out of 144 publications