This is a competitive renewal of a graduate training program in Genetics and Developmental Biology at Stanford University. The grant currently supports 16 students who train among 46 distinguished faculty from two highly interactive departments. The faculty and trainees in the program have a remarkable record of landmark contributions to the fields of genetics, genomics, and developmental biology. These include: the invention of recombinant DNA methods; the first molecular studies of developmental mutations in flies; the discovery and elucidation of the homeobox, Wnt, and hedgehog signaling pathways; the mechanistic study of RNAi pathways; the large-scale mapping and sequencing of microbial, fish, and mammalian genomes; and the application of genome-wide expression analysis in bacteria, yeast, C. elegans, Drosophila, and human tumors. We have also pioneered the development of several important new model organisms for studying fundamental biological problems, including the genetic and genomic basis of cellular asymmetry, vertebrate evolution, plant and animal domestication, and the control of lifespan in natural populations. In each of these cases, major progress has usually depended on combining genetic, genomic, and developmental approaches. In the current era, we believe that similar interdisciplinary training is more important than ever. High-throughput sequencing and massive studies of genetic variation are currently transforming much of biomedical research. However, connecting sequence information to traits remains a central challenge for researchers in all fields. Our training program directly addresses the challenge of mapping genotypes to phenotypes by offering combined training in genetics and genomics, as well as experimental methods for examining gene function in a remarkable range of both model and non-model organisms. The existence of this grant has led to the development of many special features that are now hallmarks of graduate training in our program, including: coordinated admissions, a joint training camp for entering students in computational and experimental methods, core courses, joint teaching, flexible research rotations during the first year, joint advising, joint journal clubs and research seminars, and major curricular innovations now underway to encourage interdisciplinary training. By all measures, the program has been highly successful. Applications have increased by 41% in the last five years, including an increasing number of traditionally underrepresented students as a result of major efforts in outreach and diversity recruiting. Admissions are highly selective, and approximately 90% of admitted students successfully progress to the Ph.D. Impressively, the 259 Ph.D. students who have trained in the program in the last 10 years have produced over 800 publications in leading journals. Most importantly, our trainees are embracing a full range of genetic, genomic, computational, and experimental approaches, often combining techniques from different disciplines to make major research advances, while at the same time bringing the benefits of these advances to applications in the clinical realm.

Public Health Relevance

This grant supports graduate training of 16 Ph.D. students in Genetics and Developmental Biology at Stanford University. Faculty and students in this program have made important contributions to molecular, cellular, and developmental biology as well as bacterial, human, and animal genetics. These advances have spurred on the biotechnology and biopharmaceutical industries in the San Francisco Bay Area that have ultimately led to improved clinical care and health outcome for millions of patients. !

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007790-37
Application #
8895339
Study Section
Training and Workforce Development Subcommittee - D (TWD)
Program Officer
Haynes, Susan R
Project Start
1979-07-01
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
37
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Stanford University
Department
Genetics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Wojcik, Genevieve L; Fuchsberger, Christian; Taliun, Daniel et al. (2018) Imputation-Aware Tag SNP Selection To Improve Power for Large-Scale, Multi-ethnic Association Studies. G3 (Bethesda) 8:3255-3267
Kramer, Nicholas J; Haney, Michael S; Morgens, David W et al. (2018) CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat Genet 50:603-612
Chang, Alex C Y; Chang, Andrew C H; Kirillova, Anna et al. (2018) Telomere shortening is a hallmark of genetic cardiomyopathies. Proc Natl Acad Sci U S A 115:9276-9281
Silas, Sukrit; Jain, Nimit; Stadler, Michael et al. (2018) A Small RNA Isolation and Sequencing Protocol and Its Application to Assay CRISPR RNA Biogenesis in Bacteria. Bio Protoc 8:
Dainis, Alexandra M; Ashley, Euan A (2018) Cardiovascular Precision Medicine in the Genomics Era. JACC Basic Transl Sci 3:313-326
Koh, Andrew S; Miller, Erik L; Buenrostro, Jason D et al. (2018) Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol 19:162-172
Liu, Nian; Lee, Cameron H; Swigut, Tomek et al. (2018) Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553:228-232
Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi (2018) Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev Cell 44:532
Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi (2018) Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev Cell 44:284-296
Miller, Corey N; Proekt, Irina; von Moltke, Jakob et al. (2018) Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559:627-631

Showing the most recent 10 out of 166 publications