The mission of the Cell and Molecular Biology Training Program (CMBTP) is to provide trainees with a multidisciplinary conceptual and technical foundation for developing independent careers conducting transformative research in the biomedical sciences. Strengths of the CMBTP include strong interdisciplinary training with a well-funded cadre of faculty, multiple crosscutting activities that bring together diverse faculty and trainees, trainee oversight and a rigorous selection process. Molecular cell biology in the 21st Century is increasingly driven by technological advances and involves collaborative, crosscutting research that brings together structural, biochemical, molecular and cellular methodologies. Therefore, the overarching goal of the CMBTP is to provide trainees with broad and flexible research training providing them with the skills to keep pace with the opportunities and demands of contemporary science. The CMBTP supports training in basic science discovery, and CMB faculty are engaged in mechanistic research representing eight major research themes that transcend traditional departmental and program boundaries including: Enzymology and Protein Biophysics, RNA Processing and Translational Regulation, Chromatin Structure and Transcription Regulation, Intracellular Signal Transduction, Developmental Biology, Genomics, Proteomics and Bioinformatics, Molecular Virology and Cancer Molecular Biology. The CMBTP currently supports nine predoctoral trainees for two year appointments, with competitive appointment in the second year. Support is designed to occur early in a student's career (1st-3th year) when the development of the thesis project is in its formative stages and specialization into individual Ph.D. Programs occurs. Success continues to be measured by peer-reviewed publication of original research, timely progress toward Ph.D., subsequent postdoctoral training at top institutions and ultimately development into independent research positions in academia and industry. The CMBTP has the largest number of training faculty (other than the MSTP which trains MD/Ph.D. students) and the largest pool of training grant eligible students for any program in the School of Medicine. During the current project period it has become increasingly clear that the number of outstanding applications exceeds the number of available slots. Growth in the number of trainees supported by the CMBTP will not only permit a greater number of individuals to directly benefit from its training activities, but would further broaden the impact of the training program on graduate training throughout the CWRU-SOM.

Public Health Relevance

This application proposes to continue the Cell and Molecular Biology Training Program (CMBTP) that provides predoctoral trainees with the conceptual and technical foundation for developing independent careers conducting transformative research in the biomedical sciences. The training supports the overall mission of NIGMS to promote research that increases understanding of life processes and lays the foundation for advances in diagnosis, treatment and prevention.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Knappenberger, Andrew J; Grandhi, Sneha; Sheth, Reena et al. (2017) Phylogenetic sequence analysis and functional studies reveal compensatory amino acid substitutions in loop 2 of human ribonucleotide reductase. J Biol Chem 292:16463-16476
Forrest, Megan E; Khalil, Ahmad M (2017) Review: Regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett 407:106-112
Hannigan, Molly M; Zagore, Leah L; Licatalosi, Donny D (2017) Ptbp2 Controls an Alternative Splicing Network Required for Cell Communication during Spermatogenesis. Cell Rep 19:2598-2612
Athman, Jaffre J; Sande, Obondo J; Groft, Sarah G et al. (2017) Mycobacterium tuberculosis Membrane Vesicles Inhibit T Cell Activation. J Immunol 198:2028-2037
Smith, Jenna E; Baker, Kristian E (2017) Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae. Methods Mol Biol 1648:201-220
Niland, Courtney N; Anderson, David R; Jankowsky, Eckhard et al. (2017) The contribution of the C5 protein subunit of Escherichia coli ribonuclease P to specificity for precursor tRNA is modulated by proximal 5' leader sequences. RNA 23:1502-1511
Bosworth, Colleen M; Grandhi, Sneha; Gould, Meetha P et al. (2017) Detection and quantification of mitochondrial DNA deletions from next-generation sequence data. BMC Bioinformatics 18:407
Merry, Callie R; McMahon, Sarah; Forrest, Megan E et al. (2016) Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget 7:53230-53244
Blech-Hermoni, Yotam; Dasgupta, Twishasri; Coram, Ryan J et al. (2016) Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle. PLoS One 11:e0149061
Vijayaraghavan, Jagamya; Kramp, Kristopher; Harris, Michael E et al. (2016) Inhibition of soluble guanylyl cyclase by small molecules targeting the catalytic domain. FEBS Lett 590:3669-3680

Showing the most recent 10 out of 118 publications