The mission of the Cell and Molecular Biology Training Program (CMBTP) is to provide trainees with a multidisciplinary conceptual and technical foundation for developing independent careers conducting transformative research in the biomedical sciences. Strengths of the CMBTP include strong interdisciplinary training with a well-funded cadre of faculty, multiple crosscutting activities that bring together diverse faculty and trainees, trainee oversight and a rigorous selection process. Molecular cell biology in the 21st Century is increasingly driven by technological advances and involves collaborative, crosscutting research that brings together structural, biochemical, molecular and cellular methodologies. Therefore, the overarching goal of the CMBTP is to provide trainees with broad and flexible research training providing them with the skills to keep pace with the opportunities and demands of contemporary science. The CMBTP supports training in basic science discovery, and CMB faculty are engaged in mechanistic research representing eight major research themes that transcend traditional departmental and program boundaries including: Enzymology and Protein Biophysics, RNA Processing and Translational Regulation, Chromatin Structure and Transcription Regulation, Intracellular Signal Transduction, Developmental Biology, Genomics, Proteomics and Bioinformatics, Molecular Virology and Cancer Molecular Biology. The CMBTP currently supports nine predoctoral trainees for two year appointments, with competitive appointment in the second year. Support is designed to occur early in a student's career (1st-3th year) when the development of the thesis project is in its formative stages and specialization into individual Ph.D. Programs occurs. Success continues to be measured by peer-reviewed publication of original research, timely progress toward Ph.D., subsequent postdoctoral training at top institutions and ultimately development into independent research positions in academia and industry. The CMBTP has the largest number of training faculty (other than the MSTP which trains MD/Ph.D. students) and the largest pool of training grant eligible students for any program in the School of Medicine. During the current project period it has become increasingly clear that the number of outstanding applications exceeds the number of available slots. Growth in the number of trainees supported by the CMBTP will not only permit a greater number of individuals to directly benefit from its training activities, but would further broaden the impact of the training program on graduate training throughout the CWRU-SOM.

Public Health Relevance

This application proposes to continue the Cell and Molecular Biology Training Program (CMBTP) that provides predoctoral trainees with the conceptual and technical foundation for developing independent careers conducting transformative research in the biomedical sciences. The training supports the overall mission of NIGMS to promote research that increases understanding of life processes and lays the foundation for advances in diagnosis, treatment and prevention.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008056-31
Application #
8495343
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
1983-09-22
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
31
Fiscal Year
2013
Total Cost
$352,677
Indirect Cost
$19,103
Name
Case Western Reserve University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Vijayaraghavan, Jagamya; Kramp, Kristopher; Harris, Michael E et al. (2016) Inhibition of soluble guanylyl cyclase by small molecules targeting the catalytic domain. FEBS Lett 590:3669-3680
Blech-Hermoni, Yotam; Dasgupta, Twishasri; Coram, Ryan J et al. (2016) Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle. PLoS One 11:e0149061
Niland, Courtney N; Jankowsky, Eckhard; Harris, Michael E (2016) Optimization of high-throughput sequencing kinetics for determining enzymatic rate constants of thousands of RNA substrates. Anal Biochem 510:1-10
Armentrout, Erin I; Rietsch, Arne (2016) The Type III Secretion Translocation Pore Senses Host Cell Contact. PLoS Pathog 12:e1005530
Corradin, Olivia; Cohen, Andrea J; Luppino, Jennifer M et al. (2016) Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry. Nat Genet 48:1313-1320
Lin, Hsuan-Chun; Zhao, Jing; Niland, Courtney N et al. (2016) Analysis of the RNA Binding Specificity Landscape of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity. Cell Chem Biol 23:1271-1281
Sahni, Jennifer M; Gayle, Sylvia S; Bonk, Kristen L Weber et al. (2016) Bromodomain and Extraterminal Protein Inhibition Blocks Growth of Triple-negative Breast Cancers through the Suppression of Aurora Kinases. J Biol Chem 291:23756-23768
Blech-Hermoni, Yotam; Sullivan, Connor B; Jenkins, Michael W et al. (2016) CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev Dyn 245:854-73
Tomalka, Jeffrey; Azodi, Elaheh; Narra, Hema P et al. (2015) β-Defensin 1 plays a role in acute mucosal defense against Candida albicans. J Immunol 194:1788-95
Gould, Meetha P; Bosworth, Colleen M; McMahon, Sarah et al. (2015) PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing. PLoS One 10:e0139253

Showing the most recent 10 out of 91 publications