The goal of the Biophysics Training Program (BTP) at Yale is to equip pre-doctoral trainees with the practical skills and intellectual development necessary to perform a lifetime of research with impact across a range of vital, biomedical topics. These topics are rooted in the interests of a set of faculty linking the Department of Chemistry and the Department of Molecular Biophysics and Biochemistry (MB&B). Our 33 trainers are joined by a shared fascination in developing biological insights at the molecular level with particular attention to structure, energy and dynamics. The milieus under which insights are developed range from synthetic model systems to whole animal studies with published cross talk that spans this range. Our students benefit from world-class expertise in structural biology, optical and magnetic spectroscopies, physical chemistry, computational chemistry and cryo-electron microscopy. The structure of our program and the skills of our Mentors develop in our students rigor, independence and creativity. We aspire and succeed in producing adventurous graduates who push at the frontiers of Biophysics to become the next generation of leaders in their fields. The importance of biophysics to biomedical research has grown and become increasingly dynamic. This is evident at Yale and specifically in this proposal by our greatly increased number of faculty mentors who also hold appointments in, for example, Pathology, Genetics, Pharmacology, Physics, Mechanical and Chemical Engineering. Admissions of trainees to the MB&B Department now take place through a newly formed umbrella cross-departmental track, the Biochemistry, Biophysics and Structural Biology (BBSB). This track was forged in recognition of the presence of Biophysical excellence among mentors in many departments and has greatly increased our student pool. The pool of trainees coming to the two departments of this program have backgrounds that span biology, biochemistry, molecular biology, synthetic and physical chemistry, physics and mathematics. Students fulfill curricular requirements in their first year and perform three lab rotations. These requirements are augmented with qualifying exams that compel a student to independently define a research project and defend it orally to a faculty panel. The dissertation is then given oversight by a committee of three faculty mentors who hold regular formal meetings with the trainee. We propose support for our students in their second and/or third year of graduate school after the dissertation focus becomes clear. The BTP establishes programmatic identity and greatly facilitates interactions between the two departments by several routes. This includes shared curriculum elements, rotations and joint activities such as monthly student research talks, hosting of visiting eminent speakers and a newly established retreat/symposium. These provisions, combined with the strong intellectual and material resources of the trainers, enable the BTP to produce world-class graduates.

Public Health Relevance

The Biophysics Training Program (BTP) at Yale University supports the interdisciplinary education and training of the next generation of biophysical scientists. Such an undertaking provides many avenues for innovation in modern medicine enabling our graduates to make contributions affecting, for example, the combatting of infectious disease, diagnosis and treatment of cancer, and prevention of degenerative disorders of neurons, muscles and glands. In addition, many of our graduates dedicate themselves to tool building, pushing technological boundaries so as to facilitate research across all of the biomedical sciences.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Devalliere, Julie; Chang, William G; Andrejecsk, Jillian W et al. (2014) Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J 28:908-22
Fitzgerald, Megan E; Vela, Adriana; Pyle, Anna Marie (2014) Dicer-related helicase 3 forms an obligate dimer for recognizing 22G-RNA. Nucleic Acids Res 42:3919-30
Akamatsu, Matthew; Berro, Julien; Pu, Kai-Ming et al. (2014) Cytokinetic nodes in fission yeast arise from two distinct types of nodes that merge during interphase. J Cell Biol 204:977-88
Ducas, Vanessa C; Rhoades, Elizabeth (2014) Investigation of intramolecular dynamics and conformations of ?-, ?- and ?-synuclein. PLoS One 9:e86983
Eiler, Daniel; Wang, Jimin; Steitz, Thomas A (2014) Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc Natl Acad Sci U S A 111:13028-33
Braun, Anthony R; Lacy, Michael M; Ducas, Vanessa C et al. (2014) ?-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry. J Am Chem Soc 136:9962-72
Sawyer, Nicholas; Chen, Jieming; Regan, Lynne (2013) All repeats are not equal: a module-based approach to guide repeat protein design. J Mol Biol 425:1826-38
Whittier, Sean K; Hengge, Alvan C; Loria, J Patrick (2013) Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. Science 341:899-903
Mochrie, S G J; Mack, A H; Schlingman, D J et al. (2013) Unwinding and rewinding the nucleosome inner turn: force dependence of the kinetic rate constants. Phys Rev E Stat Nonlin Soft Matter Phys 87:012710
Chen, Xinguo; Taylor, David W; Fowler, Casey C et al. (2013) An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell 153:166-77

Showing the most recent 10 out of 42 publications