The Stanford Biophysics Program is an interdisciplinary, interdepartmental predoctoral training program for students with backgrounds and interests in the physical sciences and their application to biology. The Program faculty members come from departments in the Schools of Humanities and Sciences, Medicine, Engineering, and the Stanford Synchrotron Radiation Laboratory. Student training and research centers on the application of physical and chemical principles and methods to solving biological problems, and the development of new methods. The major areas of modern biophysics are represented in the Program, principally the molecular basis of macromolecular function including structural biology, single molecule analysis, and computational biology. The quantitative relationship between molecular properties and higher- level cell and tissue properties, and research in emerging areas of quantitative cell and organ biology, are also well represented. The philosophy of the training program is to develop students with strong quantitative approaches to biological problems, while also developing their perspective in choosing forefront biological problems. There are approximately 30 trainees in the Program, most with undergraduate backgrounds in physical science, biochemistry, or engineering. A balanced academic program tailored to the diverse backgrounds of the students and an acceptable level of performance is insured by first year advising by the Program Director, and annual meetings with the thesis committee. The program requires graduate-level coursework in physical and biological sciences, participation in seminar series, and most importantly the development of a high level of proficiency in independent research. The program trains researchers who apply quantitative methods to understanding the properties of biomolecules, cells, and tissues. This basic research is the cornerstone for developing drugs targeted to specific molecules, understanding the relationships between environmental stimuli and cell and tissue behavior, and developing new methods for detection and treatment of diseases including cancer and neurological pathologies.

Public Health Relevance

The Stanford Biophysics Program is an interdisciplinary, interdepartmental predoctoral training program for students with backgrounds and interests in the physical sciences and their application to biology. This basic research is the cornerstone for developing drugs targeted to specific molecules, understanding the relationships between environmental stimuli and cell and tissue behavior, and developing new methods for detection and treatment of diseases including cancer and neurological pathologies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008294-25
Application #
8501489
Study Section
Special Emphasis Panel (ZGM1-BRT-X (TR))
Program Officer
Flicker, Paula F
Project Start
1989-07-01
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
25
Fiscal Year
2013
Total Cost
$312,582
Indirect Cost
$14,858
Name
Stanford University
Department
Biology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Liba, Orly; SoRelle, Elliott D; Sen, Debasish et al. (2016) Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci Rep 6:23337
Denny, Sarah K; Yang, Dian; Chuang, Chen-Hua et al. (2016) Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility. Cell 166:328-42
Harris, Leigh K; Theriot, Julie A (2016) Relative Rates of Surface and Volume Synthesis Set Bacterial Cell Size. Cell 165:1479-92
Coey, Aaron; Larsen, Kevin; Puglisi, Joseph D et al. (2016) Heterogeneous structures formed by conserved RNA sequences within the HIV reverse transcription initiation site. RNA 22:1689-1698
SoRelle, Elliott D; Liba, Orly; Campbell, Jos L et al. (2016) A hyperspectral method to assay the microphysiological fates of nanomaterials in histological samples. Elife 5:
Lampo, Thomas J; Kennard, Andrew S; Spakowitz, Andrew J (2016) Physical Modeling of Dynamic Coupling between Chromosomal Loci. Biophys J 110:338-47
Sen, Debasish; SoRelle, Elliott D; Liba, Orly et al. (2016) High-resolution contrast-enhanced optical coherence tomography in mice retinae. J Biomed Opt 21:66002
Hu, Kenneth H; Butte, Manish J (2016) T cell activation requires force generation. J Cell Biol 213:535-42
Li, Lingyong; Homan, Kristoff T; Vishnivetskiy, Sergey A et al. (2015) G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). J Biol Chem 290:10775-90
Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A J et al. (2015) Structural insights into µ-opioid receptor activation. Nature 524:315-21

Showing the most recent 10 out of 73 publications