The application of quantitative approaches to study biology and medicine is identified as an essential progression in future developments of biomedical research. The Molecular Biophysics Training Program (MBTP) at Vanderbilt specifically addresses this need by training students to work at the interface between quantitative molecular approaches and key problems in biology and medicine. Thus, the MBTP provides a deeper grounding in the physical sciences for trainees who have a biological sciences background, and a more thorough exposure to the biological sciences and medicine than is usual for students with a physical sciences or engineering background. Though the program draws its training faculty from nine different departments, it is rooted in an established network of common research and training activities. In additional to the 26 Training Faculty and 58 students, the training environment is greatly enriched by the active participation of ~40 scientific staff and postdoctoral fellows. Beyond a personally designed curriculum for each trainee, the MBTP holds two formal research seminar meetings each month involving the entire molecular biophysics community. The scope of research ranges from the design of small molecule drugs to the structural analysis of multi-protein cellular machinery and from characterization of membrane proteins to following the movement of biomolecules into and out of cells. Research projects involve a broad spectrum of physical, chemical, and computational approaches, including X-ray crystallography, NMR, EPR and fluorescence spectroscopies, mass spectrometry, cryo-electron microscopy, cell imaging and molecular/cellular simulations, often involving multiple approaches. Trainees typically join the MBTP late in their first year of graduate training after choosing a thesis laboratory, and are then supported for two years. Grant support covers the time needed for additional specialized didactic training and the initiation of thesis research. However, all trainees (and their preceptors) remain active in MBTP program activities throughout the duration of their graduate training.

Public Health Relevance

The ultimate goal of Molecular Biophysics is to obtain a quantitative description of the shapes, surface features and network of interactions between the many thousands of molecules that bring a cell to life. Such knowledge provides a direct understanding of normal physiology and the malfunctions that lead to disease, and in turn can be used to develop drug therapies targeted specifically for the defective molecules.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-BRT-X (TG))
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Elliott, Amicia D; Ustione, Alessandro; Piston, David W (2015) Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic ?-cell by lowering cAMP. Am J Physiol Endocrinol Metab 308:E130-43
Sturgill, Emma G; Das, Dibyendu Kumar; Takizawa, Yoshimasa et al. (2014) Kinesin-12 Kif15 targets kinetochore fibers through an intrinsic two-step mechanism. Curr Biol 24:2307-13
Barnes, Tammy M; Otero, Yolanda F; Elliott, Amicia D et al. (2014) Interleukin-6 amplifies glucagon secretion: coordinated control via the brain and pancreas. Am J Physiol Endocrinol Metab 307:E896-905
Wan, William; Stubbs, Gerald (2014) Heterogeneous seeding of HET-s(218-289) and the mutability of prion structures. Prion 8:
Borin, Brendan N; Tang, Wei; Krezel, Andrzej M (2014) Helicobacter pylori RNA polymerase ?-subunit C-terminal domain shows features unique to ?-proteobacteria and binds NikR/DNA complexes. Protein Sci 23:454-63
Gayek, A Sophia; Ohi, Ryoma (2014) Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol Biol Cell 25:2051-60
Brooks, Sonja C; Fischer, Robert L; Huh, Jin Hoe et al. (2014) 5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3. Biochemistry 53:2525-32
Collier, Scott E; Voehler, Markus; Peng, Dungeng et al. (2014) Structural and functional insights into the N-terminus of Schizosaccharomyces pombe Cdc5. Biochemistry 53:6439-51
Birmingham, William R; Starbird, Chrystal A; Panosian, Timothy D et al. (2014) Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 10:392-9
Moore, Jessica L; Becker, Kyle W; Nicklay, Joshua J et al. (2014) Imaging mass spectrometry for assessing temporal proteomics: analysis of calprotectin in Acinetobacter baumannii pulmonary infection. Proteomics 14:820-8

Showing the most recent 10 out of 92 publications