The mission of the NIGMS/MIT Biotechnology Training Program is to train leaders in the field of Biotechnology, drawing primarily from the fields of Biological Engineering, Chemical Engineering, and Chemistry. The American Heritage Dictionary defines Biotechnology as: """"""""The application of the principles of engineering and technology to the life sciences;bioengineering."""""""" Information productively flows in both directions: new technologies enable the discovery of new biology, and the discovery of new biology enables new technologies. The MIT BTP encompasses research in the fields of Bioprocess Engineering, Metabolic Engineering, Tissue Engineering, Biomolecular Design, Cellular Bioengineering, BioMEMS, Systems Biology, and more. A major aim of the MIT BTP is to broaden the students'graduate training by a program that repeatedly puts them in close contact with students and faculty from other disciplines. Trainees are appointed at the end of their first year of graduate studies, and their stipend is supported by the BTP for three years, during which they complete the following requirements: i) a) two biotechnology courses outside their home department and b) one interdisciplinary course from a restricted list;ii) Monthly BTP meetings for research updates;iii) Attendance &poster presentation at an Annual Retreat, one full day in April;iv) Training in responsible conduct of research;and v) An industrial internshipof 2-3 months. At present 19 predoctoral trainees are appointed to the program at any given time, but given the strong nominee pool and only a 58% success rate for highly qualified nominations to the program, an increase in support to 22 trainees is requested. Over 200 trainees have benefited from the program during the 24 years of existence of the NIGMS/MIT BTP, and many have risen to positions of prominence in both academics and industry. We contacted selected alumni of the program to gain their perspectives on the influence the BTP had on their career development, and numerous successful individuals cite this highly interdisciplinary program and peer network as a critical formative experience. Excerpts of these comments are included in this proposal.

Public Health Relevance

The NIGMS/MIT Biotechnology Training Program prepares outstanding Ph.D. candidates from science and engineering for leadership in the interdisciplinary field of Biotechnology. Biotechnology largely consists of the application of new life science technologies to improved therapeutics and diagnostics, although there are also growing efforts in the fields of energy, environment, and microelectronics. Graduates of this program over the past 24 years have had tremendous impact in both academics and the biotechnology industry.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Engineering (All Types)
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J et al. (2016) Early signaling dynamics of the epidermal growth factor receptor. Proc Natl Acad Sci U S A 113:3114-9
Wittenborn, Elizabeth C; Jost, Marco; Wei, Yifeng et al. (2016) Structure of the Catalytic Domain of the Class I Polyhydroxybutyrate Synthase from Cupriavidus necator. J Biol Chem 291:25264-25277
Cermak, Nathan; Olcum, Selim; Delgado, Francisco Feijó et al. (2016) High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat Biotechnol 34:1052-1059
Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon et al. (2016) Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli. Elife 5:e07141
Zhao, Boyang; Sedlak, Joseph C; Srinivas, Raja et al. (2016) Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution. Cell 165:234-46
Stevens, Mark M; Maire, Cecile L; Chou, Nigel et al. (2016) Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat Biotechnol 34:1161-1167
Sun, Daphne; Dalin, Simona; Hemann, Michael T et al. (2016) Differential selective pressure alters rate of drug resistance acquisition in heterogeneous tumor populations. Sci Rep 6:36198
Van Deventer, James A; Le, Doris N; Zhao, Jessie et al. (2016) A platform for constructing, evaluating, and screening bioconjugates on the yeast surface. Protein Eng Des Sel :
Reddy, Raven J; Curran, Timothy G; Zhang, Yi et al. (2016) Measurement of Phosphorylated Peptides with Absolute Quantification. Methods Mol Biol 1410:281-92
Gkikas, Manos; Avery, Reginald K; Olsen, Bradley D (2016) Thermoresponsive and Mechanical Properties of Poly(L-proline) Gels. Biomacromolecules 17:399-406

Showing the most recent 10 out of 163 publications