This is the second renewal of Chemistry-Biology Interface (CBI) training grant T32 GM08804. We have designed an interdisciplinary program for training students (and faculty) at the interface of biological, medicinal, and traditional chemistr, called the Biological Chemistry Program (BCP). The BCP began in the fall of 2000 and provides a focused, cross-disciplinary education for students at the interface of biology and chemistry. The BCP is fully integrated into the departments of Chemistry and Biochemistry (Colleges of Science and Medicine), and Pharmacology and Toxicology (Division of Drug Discovery and Development, College of Pharmacy). Students may obtain a degree in Chemistry, Biochemistry, or Pharmaceutical Sciences while following the Biological Chemistry Training Program. Students undertake graduate coursework in Chemistry and Biology, perform research rotations in at least two research disciplines and participate in the weekly BCP Research Forum, where students and faculty present research results. Importantly, students may work with anyone in the program, regardless of departmental affiliation, allowing for true multidisciplinary research efforts. The training faculty includes 30 highly active research groups. Students remain in the BCP until graduation. There are 39 students currently following the training program, 23 of whom are training grant eligible. An additional 15 students (14 TGE) are expected to join the BCP next fall, out of an entering class of 35 students. Training grant slots are generally awarded for years 2 and 3 in the program, allowing training grant recipients great flexibility in assemblin a multidisciplinary research project. Fellowships are awarded in May to help first-year students assemble a broad- based mentoring team. For years 11-15, we request 6 training grant slots per year, allowing for ~20% of our training-grant-eligible students to be funded at any given time. Training at the Chemistry-Biology Interface is highly relevant for advances in public health. By blending Chemistry, Medicinal Chemistry and Biochemistry, our trainees are poised to make the next breakthroughs in drug discovery, disease detection, disease prevention, and the discovery of the underlying principles governing life and disease. Our 42 BCP graduates populate both academic science centers and disease-oriented private-sector companies.

Public Health Relevance

The Biological Chemistry Program trains PhD students at the interface of Chemistry and Biology, with particular emphases on drug discovery and the underlying principles governing healthy cells. Our students are poised to make the next great discoveries in disease detection and cures.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
Schools of Arts and Sciences
United States
Zip Code
Hu, Yanmei; Musharrafieh, Rami; Ma, Chunlong et al. (2017) An M2-V27A channel blocker demonstrates potent in vitro and in vivo antiviral activities against amantadine-sensitive and -resistant influenza A viruses. Antiviral Res 140:45-54
Branca, Caterina; Shaw, Darren M; Belfiore, Ramona et al. (2017) Dyrk1 inhibition improves Alzheimer's disease-like pathology. Aging Cell 16:1146-1154
Scavello, Margarethakay; Petlick, Alexandra R; Ramesh, Ramya et al. (2017) Protein kinase A regulates the Ras, Rap1 and TORC2 pathways in response to the chemoattractant cAMP in Dictyostelium. J Cell Sci 130:1545-1558
Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami et al. (2017) Chemical Genomics Approach Leads to the Identification of Hesperadin, an Aurora B Kinase Inhibitor, as a Broad-Spectrum Influenza Antiviral. Int J Mol Sci 18:
Kaiser, Christine E; Van Ert, Natalie A; Agrawal, Prashansa et al. (2017) Insight into the Complexity of the i-Motif and G-Quadruplex DNA Structures Formed in the KRAS Promoter and Subsequent Drug-Induced Gene Repression. J Am Chem Soc 139:8522-8536
Tillotson, Joseph; Kedzior, Magdalena; Guimarães, Larissa et al. (2017) ATP-competitive, marine derived natural products that target the DEAD box helicase, eIF4A. Bioorg Med Chem Lett 27:4082-4085
Bungard, Dixie; Copple, Jacob S; Yan, Jing et al. (2017) Foldability of a Natural De Novo Evolved Protein. Structure 25:1687-1696.e4
Montfort, William R; Wales, Jessica A; Weichsel, Andrzej (2017) Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid Redox Signal 26:107-121
Wang, Jia; Cheng, Peng; Pavlyukov, Marat S et al. (2017) Targeting NEK2 attenuates glioblastoma growth and radioresistance by destabilizing histone methyltransferase EZH2. J Clin Invest 127:3075-3089
Parent, Kate L; Hill, Daniel F; Crown, Lindsey M et al. (2017) Platform to Enable Combined Measurement of Dopamine and Neural Activity. Anal Chem 89:2790-2799

Showing the most recent 10 out of 65 publications