This is the second renewal of Chemistry-Biology Interface (CBI) training grant T32 GM08804. We have designed an interdisciplinary program for training students (and faculty) at the interface of biological, medicinal, and traditional chemistr, called the Biological Chemistry Program (BCP). The BCP began in the fall of 2000 and provides a focused, cross-disciplinary education for students at the interface of biology and chemistry. The BCP is fully integrated into the departments of Chemistry and Biochemistry (Colleges of Science and Medicine), and Pharmacology and Toxicology (Division of Drug Discovery and Development, College of Pharmacy). Students may obtain a degree in Chemistry, Biochemistry, or Pharmaceutical Sciences while following the Biological Chemistry Training Program. Students undertake graduate coursework in Chemistry and Biology, perform research rotations in at least two research disciplines and participate in the weekly BCP Research Forum, where students and faculty present research results. Importantly, students may work with anyone in the program, regardless of departmental affiliation, allowing for true multidisciplinary research efforts. The training faculty includes 30 highly active research groups. Students remain in the BCP until graduation. There are 39 students currently following the training program, 23 of whom are training grant eligible. An additional 15 students (14 TGE) are expected to join the BCP next fall, out of an entering class of 35 students. Training grant slots are generally awarded for years 2 and 3 in the program, allowing training grant recipients great flexibility in assemblin a multidisciplinary research project. Fellowships are awarded in May to help first-year students assemble a broad- based mentoring team. For years 11-15, we request 6 training grant slots per year, allowing for ~20% of our training-grant-eligible students to be funded at any given time. Training at the Chemistry-Biology Interface is highly relevant for advances in public health. By blending Chemistry, Medicinal Chemistry and Biochemistry, our trainees are poised to make the next breakthroughs in drug discovery, disease detection, disease prevention, and the discovery of the underlying principles governing life and disease. Our 42 BCP graduates populate both academic science centers and disease-oriented private-sector companies.

Public Health Relevance

The Biological Chemistry Program trains PhD students at the interface of Chemistry and Biology, with particular emphases on drug discovery and the underlying principles governing healthy cells. Our students are poised to make the next great discoveries in disease detection and cures.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
Schools of Arts and Sciences
United States
Zip Code
Gallagher, Elyssia S; Adem, Seid M; Bright, Leonard K et al. (2014) Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis. Electrophoresis 35:1099-105
Wang, Yuanxiang; Frett, Brendan; Li, Hong-yu (2014) Efficient access to 2,3-diarylimidazo[1,2-a]pyridines via a one-pot, ligand-free, palladium-catalyzed three-component reaction under microwave irradiation. Org Lett 16:3016-9
Nelp, Micah T; Astashkin, Andrei V; Breci, Linda A et al. (2014) The alpha subunit of nitrile hydratase is sufficient for catalytic activity and post-translational modification. Biochemistry 53:3990-4
Dowling, Daniel P; Bruender, Nathan A; Young, Anthony P et al. (2014) Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nat Chem Biol 10:106-12
Frett, Brendan; Moccia, Marialuisa; Carlomagno, Francesca et al. (2014) Identification of two novel RET kinase inhibitors through MCR-based drug discovery: design, synthesis and evaluation. Eur J Med Chem 86:714-23
Johnson, Gail M; Chozinski, Tyler J; Gallagher, Elyssia S et al. (2014) Glutathione sulfinamide serves as a selective, endogenous biomarker for nitroxyl after exposure to therapeutic levels of donors. Free Radic Biol Med 76:299-307
Miles, Zachary D; Roberts, Sue A; McCarty, Reid M et al. (2014) Biochemical and structural studies of 6-carboxy-5,6,7,8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity within the tunnel-fold superfamily. J Biol Chem 289:23641-52
Stewart, Katie L; Dodds, Eric D; Wysocki, Vicki H et al. (2013) A polymetamorphic protein. Protein Sci 22:641-9
Fritz, Bradley G; Roberts, Sue A; Ahmed, Aqeel et al. (2013) Molecular model of a soluble guanylyl cyclase fragment determined by small-angle X-ray scattering and chemical cross-linking. Biochemistry 52:1568-82
Ahad, Ali M; Jensen, Stephanie M; Jewett, John C (2013) A traceless Staudinger reagent to deliver diazirines. Org Lett 15:5060-3

Showing the most recent 10 out of 19 publications