The Chemistry-Biochemistry-Biology Interface (CBBI) Program at the University of Notre Dame is an established NIH-funded program, which trains graduate students in a multidisciplinary environment and provides them with significant training in a cross-discipline at the interface of chemistry, biochemistry, and biology. The goal of the CBBI Program is to produce Ph.D. scientists who have in-depth training in the student's core discipline, cross-discipline training to work effectively at the interface, and enhanced interdisciplinary communication skills. The CBBI Program has been successful and has established an outstanding training environment for our Ph.D. students. During the past four years, we have trained 25 students (who were recipients of 41 one-year fellowships, 18 provided by the NIH and 23 by Notre Dame in matching support of this training grant), including 4 underrepresented minorities (URMs). Six trainees have completed the program with Ph.D. degrees, an additional 5 trainees will be receiving their Ph.D. degrees in 2011, and the remaining trainees are on track to complete their Ph.D. degrees. The characteristics of the CBBI Program include: a large applicant pool of highly qualified candidates, a strong record of collaborative and multidisciplinary research, a diverse and strong group of experienced, productive, and federally-funded investigators available to serve as research mentors, a hallmark extended cross-disciplinary research internship outside the mentor's laboratory, training supplementation with multidisciplinary seminars, trainee meetings, and an annual symposium, experienced and effective program administration, mechanisms for continuous evaluation and improvement of the training program, professional development and career placement, a summer research program to attract and retain underrepresented minorities, excellent research facilities, and strong institutional commitment. We propose to continue to train Ph.D. scientists with the skills and expertise to solve complex biomedical problems, regardless of discipline. The University of Notre Dame enthusiastically supports this training program, and will continue to provide a generous fellowship match and additional funds in support of the CBBI Program upon its funding renewal by the NIH.

Public Health Relevance

Cutting-edge biomedical research is highly multidisciplinary, requiring contributions from a diverse group of scientists. The Chemistry-Biochemistry-Biology Interface (CBBI) Program at the University of Notre Dame has met this need for cross-disciplinary training and produced researchers with a synergistic combination of scientific skills and expertise, broad knowledge across diverse scientific disciplines, and excellent communication skills. Our goal is to continue to train scientists with the skills and expertise to solve biomedical problems, regardless of discipline.

Agency
National Institute of Health (NIH)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM075762-08
Application #
8689089
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Notre Dame
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Notre Dame
State
IN
Country
United States
Zip Code
46556
Shirey, Carolyn M; Ward, Katherine E; Stahelin, Robert V (2016) Investigation of the biophysical properties of a fluorescently modified ceramide-1-phosphate. Chem Phys Lipids 200:32-41
Oda, Shun-Ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J et al. (2016) Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression. J Virol 90:1839-48
Del Vecchio, Kathryn; Stahelin, Robert V (2016) Using Surface Plasmon Resonance to Quantitatively Assess Lipid-Protein Interactions. Methods Mol Biol 1376:141-53
Jacobson, Giselle N; Clark, Patricia L (2016) Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons. Curr Opin Struct Biol 38:102-10
Clear, Kasey J; Harmatys, Kara M; Rice, Douglas R et al. (2016) Phenoxide-Bridged Zinc(II)-Bis(dipicolylamine) Probes for Molecular Imaging of Cell Death. Bioconjug Chem 27:363-75
Rice, Douglas R; Clear, Kasey J; Smith, Bradley D (2016) Imaging and therapeutic applications of zinc(ii)-dipicolylamine molecular probes for anionic biomembranes. Chem Commun (Camb) 52:8787-801
Johnson, Kristen A; Taghon, Geoffrey J F; Scott, Jordan L et al. (2016) The Ebola Virus matrix protein, VP40, requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for extensive oligomerization at the plasma membrane and viral egress. Sci Rep 6:19125
Bouley, Renee; Ding, Derong; Peng, Zhihong et al. (2016) Structure-Activity Relationship for the 4(3H)-Quinazolinone Antibacterials. J Med Chem 59:5011-21
Favila, Michelle A; Geraci, Nicholas S; Jayakumar, Asha et al. (2015) Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells. PLoS Negl Trop Dis 9:e0004238
Rice, Douglas R; White, Alexander G; Leevy, W Matthew et al. (2015) Fluorescence Imaging of Interscapular Brown Adipose Tissue in Living Mice. J Mater Chem B Mater Biol Med 3:1979-1989

Showing the most recent 10 out of 138 publications