This proposal seeks to renew support for a training program at the Chemistry-Biology Interface (CBI) at Johns Hopkins University that was established in 2005 and received NIH support in 2008. The goal is to train predoctoral students to carry out biomedical research using the tools of Chemistry and Biology. The Program is a collaborative effort between faculty in the Departments of Biochemistry and Molecular Biology (Bloomberg School of Public Health), Pharmacology and Molecular Sciences (School of Medicine), Biophysics and Biophysical Chemistry (School of Medicine), and Chemical and Biomolecular Engineering (Whiting School of Engineering), with their colleagues in the Biology, Biophysics, and Chemistry Departments (Zanvyl Krieger School of Arts & Sciences). Student participants have a diverse array of research projects including synthesis, mechanism, enzymology, molecular imaging, and biomacromolecular structure to choose from in 32 research groups. The students receive coursework training in the biological and chemical sciences, including a two-semester course in Chemical Biology designed especially for the Program, but open to all Johns Hopkins University students. Other aspects of the CBI Program include CBI Forum where students present original research proposals, research updates, first year research rotation results, and defend their theses, as well as an Annual Retreat. The students are immersed in a common curriculum (independent of the Department in which their research advisors hold primary appointments), apply directly to the CBI Program, and receive a Ph.D. in Chemical Biology upon completion. The CBI Program was initiated in fall 2005 using funding from the University, which continues to provide a high level of support. NIH currently provides one year of support for 5 students. Support is requested for 6 graduate students. An extensive network of support in the form of advising and mentoring is in place to maximize the students' success. This has resulted in >92% retention of students since the program began in 2005.

Public Health Relevance

The roles of chemistry and biology in basic and applied biomedical research are of paramount importance. There is a rapidly increasing need for scientists who can traverse both fields of science. The CBI Program at Johns Hopkins University is training scientists with this ability.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM080189-08
Application #
8882448
Study Section
Training and Workforce Development Subcommittee - D (TWD)
Program Officer
Fabian, Miles
Project Start
2007-07-01
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
8
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Bartee, David; Freel Meyers, Caren L (2018) Toward Understanding the Chemistry and Biology of 1-Deoxy-d-xylulose 5-Phosphate (DXP) Synthase: A Unique Antimicrobial Target at the Heart of Bacterial Metabolism. Acc Chem Res 51:2546-2555
Boucher, Lauren E; Hopp, Christine S; Muthinja, Julianne Mendi et al. (2018) Discovery of Plasmodium (M)TRAP-Aldolase Interaction Stabilizers Interfering with Sporozoite Motility and Invasion. ACS Infect Dis 4:620-634
Nye, Dillon B; Lecomte, Juliette T J (2018) Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin. Biochemistry 57:5785-5796
Gonzalez-Gil, Anabel; Porell, Ryan N; Fernandes, Steve M et al. (2018) Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology 28:786-801
Bartee, David; Freel Meyers, Caren L (2018) Targeting the Unique Mechanism of Bacterial 1-Deoxy-d-xylulose-5-phosphate Synthase. Biochemistry 57:4349-4356
Schatzman, Sabrina S; Culotta, Valeria C (2018) Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 4:893-903
de Jonge, Ronnie; Ebert, Malaika K; Huitt-Roehl, Callie R et al. (2018) Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc Natl Acad Sci U S A 115:E5459-E5466
Cohen, Douglas R; Townsend, Craig A (2018) Characterization of an Anthracene Intermediate in Dynemicin Biosynthesis. Angew Chem Int Ed Engl 57:5650-5654
Bartee, David; Wheadon, Michael J; Freel Meyers, Caren L (2018) Synthesis and Evaluation of Fluoroalkyl Phosphonyl Analogues of 2- C-Methylerythritol Phosphate as Substrates and Inhibitors of IspD from Human Pathogens. J Org Chem 83:9580-9591
Singh, Digvijay; Mallon, John; Poddar, Anustup et al. (2018) Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A 115:5444-5449

Showing the most recent 10 out of 82 publications