We propose continuation of a continuously funded 15-year T32 Program within the outstanding research/training environment of the Vanderbilt University Program in Developmental Biology (VUPDB). VUPDB represents multiple basic/clinical research programs in a physically compact site, with harmonious interactions. Strengths are: (1) Easy access to VUPDB faculty by any trainee, with strong student/fellow to faculty feedback. (2) Student activities (selecting visiting scientists, research forums, annual retreat, direct teaching opportunities in courses, student courses in RCR, research-in-construction classes, and didactic course training) to ensure academic and social/managerial skills for career success. (3) Excellent record in recruitment, placing students/postdocs in leadership positions in academia/industry/teaching. The Program pays excellent attention to under-represented groups. Direct institutional support for trainees includes: (1) Funding 1st-year students via the Interdisciplinary Graduate Program (IGP);(2) VUPDB central funds for administrative and training functions that otherwise would not exist but are key to T32 success. VUPDB members access state-of-the-art cores for: mass spectrometry, microscopy, NMR imaging, bioinformatics and many others. The Biomedical Research Education and Training (BRET) office co-ordinates IGP, MSTP, Career Counseling, and Postdoctoral Affairs. We request 8 slots, based on demand as a way of turning out outstanding individuals trained for future careers. Trainees undertake a program of research and training in the most modern aspects of Developmental Biology, rendering them widely versed in 'developmental'concepts and giving them a direct exposure to human health and disease at the clinical research and translational levels. Studies encompass embryogenesis (body patterning, organogenesis), organogenesis, physiological regulation, aging, reproduction, and cancer and regeneration. Special emphasis is given to high-resolution frontier technologies, genome-level analyses, epigenetics, systems biology and bioinformatics, biostatistics, chemical biology, cellular reprogramming (including iPS technology), and transdifferentiation. Trainees experience research in multi-investigator collaborative/consortium and small team-oriented efforts. Courses, lab teaching, and seminar speakers all emphasize how developmental biology generates insight into cell biology and biochemistry, and evolution. We leverage studies in various model systems, relying on the 20-year foundation built in expertise in yeast, nematode worms, fruit flies, zebrafish, chicken, and mouse. Students are funded for 2 years after their first year of cor course study and lab rotations, but mandatory training continues past the 2-year formal period, and student progress is formally followed in a detailed manner. Training Program feedback is internal from all levels, as well as by twice-per-cycle activity of a 3-member External Advisory Board. Career training opportunities in the form of group discussions and individual access are also presented.

Public Health Relevance

The broad discipline of Developmental Biology has undergone massive alterations over the last few years to include whole-genome level analyses, high- resolution imaging (including real-time on live tissue), and sophisticated genetic techniques, to allow study of behavior and differentiation of single or groups of cells, and in a normal or gene-mutated condition. Developmental Biological studies lead to massive insights into human congenital syndromes, cellular deficits that result in defective organogenesis or specific physiological or homeostatic problems, and how the mature cell state is destabilized in cancer. This training program selects high quality students from diverse backgrounds, brings them up to speed in the battery of new techniques that can now be applied, provides them with direct clinical and translational connections to their research, and provides the skills to move into higher positions doing research directly relevant to human biology and disease, or to move into industrial or teaching positions.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Institutional National Research Service Award (T32)
Project #
2T32HD007502-16A1
Application #
8475012
Study Section
Special Emphasis Panel (ZHD1-DRG-D (59))
Program Officer
Mukhopadhyay, Mahua
Project Start
1997-05-01
Project End
2018-04-30
Budget Start
2013-06-01
Budget End
2014-04-30
Support Year
16
Fiscal Year
2013
Total Cost
$269,223
Indirect Cost
$12,831
Name
Vanderbilt University Medical Center
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Broadus, Matthew R; Chen, Tony W; Neitzel, Leif R et al. (2016) Identification of a Paralog-Specific Notch1 Intracellular Domain Degron. Cell Rep 15:1920-9
Simmons, Alan J; Scurrah, Cherié R; McKinley, Eliot T et al. (2016) Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks. Sci Signal 9:rs11
Astudillo, Luisana; Da Silva, Thiago G; Wang, Zhiqiang et al. (2016) The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Res 76:3593-603
Simmons, Alan J; Banerjee, Amrita; McKinley, Eliot T et al. (2015) Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo. Mol Syst Biol 11:835
Li-Villarreal, Nanbing; Forbes, Meredyth M; Loza, Andrew J et al. (2015) Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development 142:2704-18
Adams, Rebecca L; Terry, Laura J; Wente, Susan R (2015) A Novel Saccharomyces cerevisiae FG Nucleoporin Mutant Collection for Use in Nuclear Pore Complex Functional Experiments. G3 (Bethesda) 6:51-8
Mosser, Rockann E; Maulis, Matthew F; Moullé, Valentine S et al. (2015) High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice. Am J Physiol Endocrinol Metab 308:E573-82
Pfaltzgraff, Elise R; Bader, David M (2015) Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease. Dev Dyn 244:410-6
Olena, Abigail F; Rao, Mahesh B; Thatcher, Elizabeth J et al. (2015) miR-216a regulates snx5, a novel notch signaling pathway component, during zebrafish retinal development. Dev Biol 400:72-81
Lyons, Jesse; Herring, Charles A; Banerjee, Amrita et al. (2015) Multiscale analysis of the murine intestine for modeling human diseases. Integr Biol (Camb) 7:740-57

Showing the most recent 10 out of 67 publications