This is a competitive renewal application of The Stanford Genome Training Program, which is one of the first NHGRI sponsored program established in 1995. This program has been highly successful and has supported and trained 119 graduate students and 44 postdoctoral fellows since it began;many of these have gone on to become leaders in their field. This application proposes to modestly increase its number of Trainees to 28 predoctoral fellows and 6 postdoctoral fellows from its existing level, consistent with its substantial increase in expansion of the program. There are presently 60 Participating Faculty in 15 different departments at Stanford. Research opportunities abound in broad areas of genomics and computational biology including genome characterization, medical genomics, technology development, comparative genomics, diversity and variation, development genomics, proteomics and metabolomics, gene regulation and systems biology, all with an "omics" emphasis. Organisms that are studied include yeast, flies, worms, fish, mice, and humans and other primates (chimpanzees, gorillas, and orangutans). The emphasis of the SGTP will be to continue to provide a broad interdisciplinary education to a wide range to trainees, to serve to coordinate genomic research and training activities across the entire campus, and to help disseminate genomic science by preparing Trainees for the next steps in their careers. The program contains many unique elements that prepare Trainees for genomics research and highly successful careers. In addition, the SGTP proposes to continue an active Diversity Action Plan (DAP). The DAP will continue to recruit, retain and train individuals of diverse backgrounds for careers in the genomic sciences.)

Public Health Relevance

The field of genomics is a rapidly expanding area that will impact all areas of science including medicine. The SGTP plans to train graduate students and postdoctoral fellows to not only have highly successful careers in this area, but form the next generation of leaders in this field in both academia, industry and related professions. )

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
2T32HG000044-16
Application #
8338337
Study Section
Ethical, Legal, Social Implications Review Committee (GNOM)
Program Officer
Junkins, Heather
Project Start
1995-09-01
Project End
2017-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
16
Fiscal Year
2012
Total Cost
$1,399,862
Indirect Cost
$96,718
Name
Stanford University
Department
Genetics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Corces, M Ryan; Buenrostro, Jason D; Wu, Beijing et al. (2016) Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48:1193-203
Mann, Frederick G; Van Nostrand, Eric L; Friedland, Ari E et al. (2016) Deactivation of the GATA Transcription Factor ELT-2 Is a Major Driver of Normal Aging in C. elegans. PLoS Genet 12:e1005956
Bersuker, Kirill; Brandeis, Michael; Kopito, Ron R (2016) Protein misfolding specifies recruitment to cytoplasmic inclusion bodies. J Cell Biol 213:229-41
Sharp, Katherine A; Axelrod, Jeffrey D (2016) Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms. Biol Open 5:229-36
Venkataram, Sandeep; Dunn, Barbara; Li, Yuping et al. (2016) Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast. Cell 166:1585-1596.e22
Smith, Justin D; Suresh, Sundari; Schlecht, Ulrich et al. (2016) Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 17:45
Cooke, Thomas F; Yee, Muh-Ching; Muzzio, Marina et al. (2016) GBStools: A Statistical Method for Estimating Allelic Dropout in Reduced Representation Sequencing Data. PLoS Genet 12:e1005631
Arribere, Joshua A; Cenik, Elif S; Jain, Nimit et al. (2016) Translation readthrough mitigation. Nature 534:719-23
Durruthy-Durruthy, Jens; Sebastiano, Vittorio; Wossidlo, Mark et al. (2016) The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat Genet 48:44-52
Kessler, Michael D; Yerges-Armstrong, Laura; Taub, Margaret A et al. (2016) Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat Commun 7:12521

Showing the most recent 10 out of 224 publications