7. Abstract We propose to continue the highly successful Stanford Genome Training Program for another five years, comprising the 23rd to the 27th year of the program. The SGTP has trained 178 Graduate Students and 65 Postdoctoral Fellows since its inception. Students will perform their research in the laboratories of an outstanding set of 64 participating faculty from fourteen departments in three Stanford schools; the majority of these investigators have previously trained students or postdocs supported by the SGTP. Collaborations and interactions among faculty and students are commonplace and facilitate student success and interdisciplinary research, and our well-resourced laboratories support the very best science. Trainees participate in extensive training programs that include, in addition to initial laboratory rotations and their subsequent thesis work, rigorous coursework, skill-building in computational and quantitative biology, and training in the responsible conduct of research, among other activities. The Stanford School of Medicine is highly supportive with programs that foster general skills, well-being and career advancement, and provides a highly advanced environment to conduct the most cutting-edge research. Our efforts to provide a diverse program have been extremely successful, with admitted diversity PhD candidates consistently making up between 10 and 20 percent of our Genetics Graduate Students and SGTP trainees. The productivity and publication record of the past trainees and the outcomes in terms of job placement has been exceptional, and we plan to continue to train the next generation of science leaders and highly skilled technical staff, both in academia and in the private sector.

Public Health Relevance

The Stanford Genome Training Program trains PhD students and Postdoctoral fellows to go on to productive technical and high-level leadership positions in the biomedical sciences, in academia and in the private sector. Specifically, we train the next generation of scientists in the field of genomics, which is becoming increasingly important in disease diagnosis and prevention due to tremendous technical advances and a confluence of computer science with biomedicine in the past decade. Many of those advances were catalyzed and driven by our former trainees and those of similar institutions.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
2T32HG000044-21
Application #
9277796
Study Section
Special Emphasis Panel (ZHG1)
Program Officer
Colley, Heather
Project Start
1995-09-01
Project End
2022-08-31
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
21
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Stanford University
Department
Genetics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Merker, Jason D; Wenger, Aaron M; Sneddon, Tam et al. (2018) Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet Med 20:159-163
Lowe, Craig B; Sanchez-Luege, Nicelio; Howes, Timothy R et al. (2018) Detecting differential copy number variation between groups of samples. Genome Res 28:256-265
Koh, Andrew S; Miller, Erik L; Buenrostro, Jason D et al. (2018) Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol 19:162-172
Zaidan, Hiba; Ramaswami, Gokul; Golumbic, Yaela N et al. (2018) A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 19:28
Wang, Bo; Pourshafeie, Armin; Zitnik, Marinka et al. (2018) Network enhancement as a general method to denoise weighted biological networks. Nat Commun 9:3108
Rhee, Siyeon; Chung, Jae I; King, Devin A et al. (2018) Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat Commun 9:368
Zhang, Haiyang; Wang, Yi; Bai, Ming et al. (2018) Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci 109:629-641
Garcia, Victor; Glassberg, Emily C; Harpak, Arbel et al. (2018) Clonal interference can cause wavelet-like oscillations of multilocus linkage disequilibrium. J R Soc Interface 15:
Gowans, Graeme J; Schep, Alicia N; Wong, Ka Man et al. (2018) INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division. Cell Rep 22:611-623
Kovary, Kyle M; Taylor, Brooks; Zhao, Michael L et al. (2018) Expression variation and covariation impair analog and enable binary signaling control. Mol Syst Biol 14:e7997

Showing the most recent 10 out of 327 publications