The Genomic Sciences Training Program (GSTP) is training the new generation of genomic scientists with strengths spanning across multiple disciplines. The training opportunities and environment we propose will enable our trainees to develop and apply new tools, derived from technological advances that are informed by cutting-edge statistical and computational approaches that functionalize diverse and large datasets. The new genomic approaches to biological and medical investigation demand scientists who are knowledgeable and skilled across several fields in effective ways that potentate new insights or inventions. Accordingly, the emergence of new tools allowing for the creation and interpretation of large-scale experimental efforts is what GSTP has focused on by the didactical interweaving of investigative approaches drawn from multiple fields (biology, genetics, physical sciences, engineering, computer science, and statistics) that were individually contoured for complementing a trainee's core disciplinary focus, yet built upon achievement and knowledge within the genomic sciences. Given the incredibly rich scientific and engineering breadth of the University of Wisconsin, GSTP was able to recruit outstanding trainees who greatly advanced mass spectroscopy, microarray technologies, computation, and bio-devices, while exploring new applications leveraging these advantages for cutting-edge investigation into proteomics, transcription, metabolomics, and genome biology. Such achievement has spawned the establishment of a significant genomics community on our campus through networking of trainees and trainers to become central hubs for groundbreaking collaborations reaching across departments, centers, and other training programs. We propose for the renewal of this program that we continue this focus with added emphasis on programmatic evaluation of GSTP, increased training in developing methods for analyzing and interpreting large datasets, and fostering of clinical applications. We request funding for training on a yearly basis: 10 predoctoral (1-3 yrs), 4 postdoctoral (1-3 yrs), and 2 short-term (0.25 yr) trainees; we will seek trainees with recent undergraduate and graduate degrees.

Public Health Relevance

Modern medical practice is now relying on the fruits of genomic research for analyzing the genetic makeup of patients and their cancers. New medical treatments are increasingly being tailored to individual patients for increasing their effectivenes and lessening side-effects. We propose to train scientists who will be developing the systems and analysis that will enable greater use of genomic information for biomedical researchers and the general public when they see a doctor.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HG002760-13
Application #
8854120
Study Section
National Human Genome Research Institute Initial Review Group (GNOM)
Program Officer
Junkins, Heather
Project Start
2003-07-01
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
13
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Miscellaneous
Type
Graduate Schools
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Clark, Ryan L; McGinley, Laura L; Purdy, Hugh M et al. (2018) Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth. Metab Eng 47:230-242
Waters, Elizabeth A; Shusta, Eric V (2018) The variable lymphocyte receptor as an antibody alternative. Curr Opin Biotechnol 52:74-79
Stallcop, Loren E; Álvarez-García, Yasmín R; Reyes-Ramos, Ana M et al. (2018) Razor-printed sticker microdevices for cell-based applications. Lab Chip 18:451-462
Yin, John; Redovich, Jacob (2018) Kinetic Modeling of Virus Growth in Cells. Microbiol Mol Biol Rev 82:
Álvarez-García, Yasmín R; Ramos-Cruz, Karla P; Agostini-Infanzón, Reinaldo J et al. (2018) Open multi-culture platform for simple and flexible study of multi-cell type interactions. Lab Chip 18:3184-3195
Hebert, Alexander S; Prasad, Satendra; Belford, Michael W et al. (2018) Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer. Anal Chem 90:9529-9537
Steyer, Benjamin; Cory, Evan; Saha, Krishanu (2018) Developing precision medicine using scarless genome editing of human pluripotent stem cells. Drug Discov Today Technol 28:3-12
Steyer, Benjamin; Bu, Qian; Cory, Evan et al. (2018) Scarless Genome Editing of Human Pluripotent Stem Cells via Transient Puromycin Selection. Stem Cell Reports 10:642-654
Mehrer, Christopher R; Incha, Matthew R; Politz, Mark C et al. (2018) Anaerobic production of medium-chain fatty alcohols via a ?-reduction pathway. Metab Eng 48:63-71
Krerowicz, Samuel J W; Hernandez-Ortiz, Juan P; Schwartz, David C (2018) Microscale Objects via Restructuring of Large, Double-Stranded DNA Molecules. ACS Appl Mater Interfaces :

Showing the most recent 10 out of 184 publications