The breadth of interdisciplinary research teams is expanding dramatically. At the intersection of environment and health, in particular, teams increasingly need strong grounding in basic biology and genetics while at the same time need increasingly sophisticated analyses of disease models. Only then will they be prepared to study the interaction of susceptibility genes with environmental exposures. For that reason we have adopted the approach that the modern trainee cannot be expected to do it all;rather, to succeed he or she will need to be prepared with the strongest possible disciplinary foundation together with the tools needed to work effectively with others outside their own discipline. From a large and talented pool of applicants, we select outstanding BS and DVM trainees who seek the PhD or ScD degree, and outstanding PhD, MD, and DVM trainees who make a 3-year commitment to postdoctoral training in interdisciplinary pulmonary sciences. Trainees with backgrounds in biology, medicine, engineering, and physics work side-by-side on problems at the intersection of pulmonary sciences and environmental exposures. These trainees benefit from working with each other, working with trainees not supported by this T32, and working with a well-funded interdisciplinary faculty. This faculty addresses three main problems: air pollution, lung infection, and asthma. The theme of pulmonary inflammation spans these foci. Another theme is a strong emphasis on engineering and physical sciences. Bridging the gap between the life sciences and the physical / engineering sciences has been a longstanding goal of our program. These themes foster exceptional levels of collaboration among a faculty with unusually diverse expertise and interests. They form the faculty into a cohesive interdisciplinary team elucidating basic mechanisms of lung disease. Our Program offers access to excellent facilities and unique nanotechnologies, and is designed so that trainees will: 1) master modern technologies of cell and molecular biology as well as integrative physiology;2) learn the relative strengths and weaknesses of different approaches, 3) design experiments effectively and interpret data critically, 4) adapt well to change, and 5) build successful careers as responsible members of the scientific community. In the past 34 years of our T32 we have never had an unfilled slot. In the past 10 years of our T32, 6 of our trainees were underrepresented minorities and 27 have completed training. 25 are currently working in science, including 7 in industry and 18 in academia at the rank of assistant professor or higher.

Public Health Relevance

Our training program addresses three main problems: air pollution, lung infection, and asthma. The theme of pulmonary inflammation certainly spans these problems, as does a strong interdisciplinary emphasis on bridging the gap between the biological sciences and the physical sciences. These bridging themes form our faculty into a cohesive interdisciplinary training program elucidating basic mechanisms of lung disease.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Tigno, Xenia
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Public Health & Prev Medicine
Schools of Public Health
United States
Zip Code
Mathews, Joel A; Williams, Alison S; Brand, Jeffrey D et al. (2014) ?? T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNF?. PLoS One 9:e97707
Gibbons, John G; Branco, Alan T; Yu, Shoukai et al. (2014) Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat Commun 5:4850
Sadati, Monirosadat; Nourhani, Amir; Fredberg, Jeffrey J et al. (2014) Glass-like dynamics in the cell and in cellular collectives. Wiley Interdiscip Rev Syst Biol Med 6:137-49
Gazourian, Lee; Rogers, Angela J; Ibanga, Ruby et al. (2014) Factors associated with bronchiolitis obliterans syndrome and chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation. Am J Hematol 89:404-9
Cloonan, Suzanne M; Lam, Hilaire C; Ryter, Stefan W et al. (2014) "Ciliophagy": The consumption of cilia components by autophagy. Autophagy 10:532-4
Rogers, Angela J; McGeachie, Michael; Baron, Rebecca M et al. (2014) Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One 9:e87538
Sotiriou, Georgios A; Watson, Christa; Murdaugh, Kimberly M et al. (2014) Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential. Environ Sci Nano 1:144-153
Watson, Christa; Ge, Jing; Cohen, Joel et al. (2014) High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8:2118-33
Himes, Blanca E; Jiang, Xiaofeng; Wagner, Peter et al. (2014) RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS One 9:e99625
Hardin, Corey; Fredberg, Jeffrey J; Krishnan, Ramaswamy (2013) Real estate of monolayer permeability: location location location. Lab Invest 93:148-50

Showing the most recent 10 out of 84 publications