The primary objective of this proposal is to continue our longstanding cardiopulmonary research training efforts at the University of Colorado Anschutz Medical Campus (CUAMC). This program trains individuals with doctoral degrees in either biological or medical sciences for successful academic careers. A multidisciplinary team oriented approach to both mentoring and research training is emphasizing the integration of studies at the molecular, cellular, tissue organ, and physiological (whole animals or human subjects) levels to permit rapid bench-to-bedside translation of the work performed. We have continued to expand the focus of the training program to include access to expertise in Bioengineering, Biomaterials, Regenerative Medicine, Genomics and Metabolomics and Redox Biology. This expanded focus will enable us to involve outstanding programs and investigators whose work is directly related to cardiopulmonary biology. Of the many training grants at CUAMC, this is the only one specifically dedicated to pulmonary vascular biology. Our continuing and long-term goal is that after 3 years of training the program's fellows will have acquired the professional skills to be competitive for research and/or teaching positions and obtain their own extramural funds. Our records show that we have achieved this benchmark. Our specific objectives are: 1) To attract and select talented and highly motivated fellows who have a demonstrated interest in cardiovascular and pulmonary diseases. 2) To provide trainee fellows with an intensive research experience in cardiovascular-pulmonary research with a focus on the pathophysiological aspects of chronic pulmonary vascular disease and right heart failure, by pairing them with mentors who are rigorously selected based on their qualifications and scientific area of expertise and placing them in a collaborative, stimulating environment. 3) To enhance the scientific knowledge and critical thinking abilities of the participating trainees by requiring a series of workshops/lectures on hypothesis formulation, experimental design, reporting and presentation of scientific information, grant proposal preparation and hands on experience in innovative molecular and cellular physiological approaches to cardiovascular-pulmonary research. 4) To enhance multidisciplinary, collaborative approaches to research by requiring co-mentors and a Team-oriented T-shaped Development for T-32 Trainees (T4) approach along with strong interaction with Advisory Committees. 5) To ensure that Fellows acquire the necessary information to conduct research in an ethical manner. 6) To help the trainees/scientists develop proficiency with a wide array of non-bench professional skills necessary for biomedical research careers such as communication, leadership development, and project management and professionalism. The increasing national and international interest in pulmonary vascular biology, the expanded nature of our program, and the excellent track record of training individuals from all backgrounds, including underrepresented minorities, support our request for 6 postdoctoral trainees each year.

Public Health Relevance

A large number of human diseases can affect the structure and function of blood vessels in the lung. In fact, when diseases are complicated by increases in pressure in the lung blood vessels (lung vascular disease), significant increases in morbidity and mortality are observed, which are often due to dysfunction or failure of the right heart. This program is directed at training individuals to better understand the causes of lung vascular and right heart disease with the long-tem goal that these investigators will develop new therapies to decrease or ameliorate the health burden of lung vascular problems.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Colombini-Hatch, Sandra
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Lu, Li; Ye, Shuyu; Scalzo, Rebecca L et al. (2017) Metformin prevents ischaemic ventricular fibrillation in metabolically normal pigs. Diabetologia 60:1550-1558
Woulfe, Kathleen C; Siomos, Austine K; Nguyen, Hieu et al. (2017) Fibrosis and Fibrotic Gene Expression in Pediatric and Adult Patients With Idiopathic Dilated Cardiomyopathy. J Card Fail 23:314-324
Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine et al. (2017) Correction: Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 12:e0173652
Jiang, Xuan; Sucharov, Juliana; Stauffer, Brian L et al. (2017) Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. Am J Physiol Heart Circ Physiol 312:H818-H826
Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine et al. (2017) Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 12:e0171219
Mouradian, Gary C; Gaurav, Rohit; Pugliese, Steve et al. (2017) Superoxide Dismutase 3 R213G Single-Nucleotide Polymorphism Blocks Murine Bleomycin-Induced Fibrosis and Promotes Resolution of Inflammation. Am J Respir Cell Mol Biol 56:362-371
Scalzo, Rebecca L; Moreau, Kerrie L; Ozemek, Cemal et al. (2017) Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes. J Diabetes Complications 31:449-455
Hernández-Saavedra, Daniel; Sanders, Linda; Perez, Mario J et al. (2017) RTP801 Amplifies Nicotinamide Adenine Dinucleotide Phosphate Oxidase-4-Dependent Oxidative Stress Induced by Cigarette Smoke. Am J Respir Cell Mol Biol 56:62-73
Reid, Brian G; Stratton, Matthew S; Bowers, Samantha et al. (2016) Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol 97:106-13
Keller, Amy C; Knaub, Leslie A; McClatchey, P Mason et al. (2016) Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model. Oxid Med Cell Longev 2016:8524267

Showing the most recent 10 out of 115 publications