This proposal defines a multi-disciplinary postdoctoral research training program to annually support six graduates of medicine, veterinary medicine, or the basic biomedical sciences. The past 29 years of this program document an impressive record of successfully training young scientists;indeed, 87% of completed trainees in the past decade (n=22) remain in research or training, and 10 received independent funding while supported by this program. Thus, we will continue to provide robust postdoctoral research training in areas highly relevant to cardiovascular biology/pathology provided by the well-funded, interactive laboratories of 20 investigators from the Departments of Biochemistry, Cellular/Structural Biology, Clinical Laboratory Sciences, Medicine, Opthalmology, Pathology, Periodontics, Pharmacology, Physiology, and Surgery at the University of Texas Health Science Center at San Antonio (UTHSCSA) and the Department of Mechanical Engineering at the University of Texas at San Antonio (UTSA). This research training program will continue to actively recruit and retain trainees from diverse backgrounds;the record of success in the past 10 years (1/3 of trainees from underrepresented groups) reflects our commitment in addressing national efforts to promote diversity in the biomedical workforce. We will also continue to recruit the most highly meritorious research trainees from throughout the best graduate and medical programs in the United States. Principal components of the training program include: (1) active participation with graded responsibility in the research laboratory of an experienced investigator;(2) a continuing research-in-progress seminar series;(3) an integrated lecture series on topics in cardiovascular (patho)biology presented by the training faculty;(4) didactic courses and seminars in the responsible conduct of research, scientific communications, and grantsmanship/peer review;(5) dual mentorship with a rigorous mentorship plan, (6) preparation of an individual development plan (IDP) and the comprehensive evaluation of annual progress, and (7) submission of an independent grant application. Trainee access to on-going departmental conferences, seminars, clinical rounds, pre- and postdoctoral courses further enhances the training experience. Research areas are encompassed within three investigative themes: (1) Inflammation, Cell Injury, and Adaptation;(2) Diabetes, and (3) Cardiovascular Pathophysiology. Integration of these overlapping research themes incorporates a range of highly relevant basic biomedical science investigations which are essential for our understanding of the genetic, biochemical, and molecular mechanisms that contribute to cardiovascular pathobiology. Given the complexities, morbidity, and mortality associated with occlusive cardiovascular disease in developed countries, this postdoctoral research training program will continue to provide scientists with the requisite skills to successfully pursue independent translational science studies directed towards the prevention and treatment of these prevalent disorders.

Public Health Relevance

Heart attacks and stroke continue to be the most common causes of death and disability in the United States and are most often the result of occlusion of blood flow to the heart or brain. Well-trained scientists are needed to investigate the causes and complications of these occlusive events. This research training program is designed to prepare young scientists to become the next generation of independent investigators who can work in teams to discover answers that will lead to the prevention and treatment of occlusive vascular disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Carlson, Drew E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center San Antonio
Schools of Medicine
San Antonio
United States
Zip Code
Phipps, Jennifer E; Vela, Deborah; Hoyt, Taylor et al. (2015) Macrophages and intravascular OCT bright spots: a quantitative study. JACC Cardiovasc Imaging 8:63-72
Bresnen, Andrew; Duong, Timothy Q (2015) Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla. Magn Reson Med 73:726-30
Bardgett, Megan E; Sharpe, Amanda L; Toney, Glenn M (2014) Activation of corticotropin-releasing factor receptors in the rostral ventrolateral medulla is required for glucose-induced sympathoexcitation. Am J Physiol Endocrinol Metab 307:E944-53
Bardgett, Megan E; Chen, Qing-Hui; Guo, Qing et al. (2014) Coping with dehydration: sympathetic activation and regulation of glutamatergic transmission in the hypothalamic PVN. Am J Physiol Regul Integr Comp Physiol 306:R804-13
Emeterio Nateras, Oscar San; Harrison, Joseph M; Muir, Eric R et al. (2014) Choroidal blood flow decreases with age: an MRI study. Curr Eye Res 39:1059-67
Muir, Eric R; Watts, Lora Talley; Tiwari, Yash Vardhan et al. (2014) Quantitative cerebral blood flow measurements using MRI. Methods Mol Biol 1135:205-11
Holbein, Walter W; Bardgett, Megan E; Toney, Glenn M (2014) Blood pressure is maintained during dehydration by hypothalamic paraventricular nucleus-driven tonic sympathetic nerve activity. J Physiol 592:3783-99
Bardgett, Megan E; Holbein, Walter W; Herrera-Rosales, Myrna et al. (2014) Ang II-salt hypertension depends on neuronal activity in the hypothalamic paraventricular nucleus but not on local actions of tumor necrosis factor-*. Hypertension 63:527-34
Han, Hai-Chao; Chesnutt, Jennifer K W; Garcia, Justin R et al. (2013) Artery buckling: new phenotypes, models, and applications. Ann Biomed Eng 41:1399-410
Muir, Eric R; Zhang, Yi; San Emeterio Nateras, Oscar et al. (2013) Human vitreous: MR imaging of oxygen partial pressure. Radiology 266:905-11

Showing the most recent 10 out of 41 publications