Our program is well suited to generate the needed investigators for multi-disciplinary training. We have specific training programs for clinically trained physician postdoctoral investigators and research trained PhD postdoctoral investigators. To facilitate the development of a cohesive training environment we integrate the three major cardiovascular research centers at the University of Utah School of Medicine: The University of Utah Molecular Medicine Program at the Eccles Institute of Human Genetics, Heart Failure and Regeneration Initiatives in the Divisions of Cardiology and Cardiothoracic Surgery at the School of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute that specializes in cardiac electrophysiology and ion transport. These three centers of cardiovascular research are located near to one another on our campus and form the three legs of a tripod that support the T32 in Cardiovascular Research. Nineteen members of the faculty of the School of Medicine will form the 'core training faculty'for the program. All are experts in their fields and are successful in training post doctoral fellows. We wish to support eight post-doctoral MD and PhD scientist-trainees each year. We anticipate that each trainee will be supported for a minimum of two years by the T32.

Public Health Relevance

The basis for this program's existence and continuation is the need for well-trained investigators in cardiovascular medicine. There are too few well trained cardiovascular investigators to take advantage of today's enormous growth in genetics, imaging, and technological advances. The University of Utah has successfully trained cardiovascular investigators and is well-equipped to continue this success.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL007576-28
Application #
8502721
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Scott, Jane
Project Start
1994-07-01
Project End
2016-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
28
Fiscal Year
2013
Total Cost
$532,114
Indirect Cost
$37,588
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Gibson, Christopher C; Zhu, Weiquan; Davis, Chadwick T et al. (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131:289-99
Cui, Tie-Zhong; Conte, Annalea; Fox, Jennifer L et al. (2014) Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes. J Biol Chem 289:6133-41
Lopez-Izquierdo, Angelica; Pereira, Renata O; Wende, Adam R et al. (2014) The absence of insulin signaling in the heart induces changes in potassium channel expression and ventricular repolarization. Am J Physiol Heart Circ Physiol 306:H747-54
Pereira, Renata O; Wende, Adam R; Olsen, Curtis et al. (2014) GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J Mol Cell Cardiol 72:95-103
Miller, Thomas A; Minich, L Luann; Lambert, Linda M et al. (2014) Abnormal abdominal aorta hemodynamics are associated with necrotizing enterocolitis in infants with hypoplastic left heart syndrome. Pediatr Cardiol 35:616-21
Riehle, Christian; Wende, Adam R; Zhu, Yi et al. (2014) Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol Cell Biol 34:3450-60
Donato, Anthony J; Henson, Grant D; Hart, Corey R et al. (2014) The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. J Physiol 592:4083-96
Pereira, Renata O; Wende, Adam R; Crum, Ashley et al. (2014) Maintaining PGC-1? expression following pressure overload-induced cardiac hypertrophy preserves angiogenesis but not contractile or mitochondrial function. FASEB J 28:3691-702
Walker, Ashley E; Henson, Grant D; Reihl, Kelly D et al. (2014) Beneficial effects of lifelong caloric restriction on endothelial function are greater in conduit arteries compared to cerebral resistance arteries. Age (Dordr) 36:559-69
Grossmann, Allie H; Yoo, Jae Hyuk; Clancy, James et al. (2013) The small GTPase ARF6 stimulates *-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal 6:ra14

Showing the most recent 10 out of 52 publications