This Renewal Application for a well-established Ruth L. Kirschstein Institutional National Research Service Award (T32) is focused on the postdoctoral training of M.D., M.D.-Ph.D., and Ph.D. candidates to prepare them to pursue independent careers as successful Clinician-Scientists and/or Biomedical Research Scientists, whose primary interest is the cellular and molecular mechanisms of human disease. Its primary training goal is the development of core research competencies through both informal and structured didactic exercises, coupled with an in-depth mentored research experience, in a nurturing and supportive academic medical center environment. The programmatic emphasis is on understanding the basic pathogenetic mechanisms underlying major disease processes that affect the cardiovascular, pulmonary, hematopoietic/immune, and other organ systems, through the application of the multidisciplinary research tools and strategies of modern cellular and molecular biology, immunology, genetics and genomics, integrative physiology, and bioinformatics. The current Training Program, sponsored by the National Heart, Lung and Blood Institute, has been in continuous existence since 1958, and is based in the Department of Pathology at the Brigham and Women's Hospital, a primary teaching affiliate of Harvard Medical School. While the Training Program's Core Faculty is comprised primarily of clinician-scientists and basic biomedical researchers in the Department of Pathology, trainees also are encouraged to avail themselves of a wide spectrum of opportunities afforded by research mentors/laboratories in Harvard-affiliated research/medical center institutions (e.g., The Broad Institute, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Massachusetts General Hospital and Massachusetts Institute of Technology). Trainees are selected from a national pool of applicants, via a proactive recruitment process, and the Program's emphasis is on tailoring a research training experience to fit a given candidate's background, scientific interests and career goals. The overarching scientific principle is one of translational molecular pathology - the probing of disease mechanisms at a fundamental mechanistic level that yields new insights that can be translated into targeted treatments for diverse diseases and, ultimately, their prevention.

Public Health Relevance

Various disease processes that affect the cardiovascular, pulmonary, hematopoietic/immune, and other organ systems - creating a major health burden - appear to share in common basic pathogenetic mechanisms. Training in the skills of modern translational molecular pathology and bioinformatics can prepare the next generation of biomedical scientists to develop effective diagnostic, therapeutic and preventive strategies, in both academic and industrial settings.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
3T32HL007627-32S2
Application #
9502487
Study Section
Special Emphasis Panel (NITM (OA))
Program Officer
Wang, Wayne C
Project Start
1985-07-01
Project End
2020-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
32
Fiscal Year
2017
Total Cost
$8,191
Indirect Cost
$607
Name
Brigham and Women's Hospital
Department
Type
Independent Hospitals
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Nishi, Hiroshi; Furuhashi, Kazuhiro; Cullere, Xavier et al. (2017) Neutrophil Fc?RIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J Clin Invest 127:3810-3826
Seegar, Tom C M; Killingsworth, Lauren B; Saha, Nayanendu et al. (2017) Structural Basis for Regulated Proteolysis by the ?-Secretase ADAM10. Cell 171:1638-1648.e7
Li, Bo; Severson, Eric; Pignon, Jean-Christophe et al. (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174
Allegretti, J R; Kearney, S; Li, N et al. (2016) Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther 43:1142-53
Bucci, Vanni; Tzen, Belinda; Li, Ning et al. (2016) MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol 17:121
Ni, Jing; Ramkissoon, Shakti H; Xie, Shaozhen et al. (2016) Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nat Med 22:723-6
Zimmerman, Brandon; Kelly, Brendan; McMillan, Brian J et al. (2016) Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket. Cell 167:1041-1051.e11
Bandopadhayay, Pratiti; Ramkissoon, Lori A; Jain, Payal et al. (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48:273-82
Miller, Michael B; Bi, Wenya Linda; Ramkissoon, Lori A et al. (2016) MAPK activation and HRAS mutation identified in pituitary spindle cell oncocytoma. Oncotarget 7:37054-37063
Sun, Zhen-Yu J; Bhanu, Meera K; Allan, Martin G et al. (2016) Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins. PLoS One 11:e0163660

Showing the most recent 10 out of 123 publications