The University of Iowa's Multidisciplinary Lung Research Career Development Program (MLRCDP) trains highly motivated pre- (3 slots) and post-doctoral (12 slots) trainees for innovative and leadership careers in lung disease research. The cohesive and highly interactive program offers trainees a curriculum that provides basic, clinical, and translational research training under the close supervision and guidance of a multidisciplinary group of mentors. This program encourages trainees, including those from traditionally underrepresented populations, to pursue a career in lung disease research. The program provides the opportunity to train in a variety of research disciplines, including epidemiology, biostatistics, cell and molecular biology, neonatology, physiology, radiology, pharmacology, and pediatrics. The MLRCDP also includes training for NIH roadmap technologies, such as computational biology, genetics, nanotechnology, and imaging. Program trainees have access to the breadth of resources and facilities that make the University of Iowa a top-ranked institution in lung health science research;these include a number of well-funded multidisciplinary research programs and graduate programs, including the Institute for Clinical and Translational Science Graduate Program in Translational Biomedicine. The leadership and faculty of this training program have worked together for several years. They have developed a collegiality, stability and shared intellectual vigor that has produced an outstanding environment for lung-related research and training. The faculty are highly accomplished, both individually and collectively. Their efforts have generated many important scientific discoveries, established several multidisciplinary centers and programs, and created a training environment that continues to produce outstanding scientists in pulmonary biology. The MLRCDP leadership and faculty have developed innovative mentoring and evaluation programs that reflect the strong desire to train the next generation of outstanding lung scientists.

Public Health Relevance

The University of Iowa's (UI) Multidisciplinary Lung Research Career Development Program (MLRCDP) trains highly motivated pre- and post-doctoral trainees for innovative and significant careers in lung disease research. The MLRCDP offers trainees a curriculum that provides basic, clinical, and translational research training and close supervision and guidance by a multidisciplinary group of mentors from multiple institutes, colleges, and departments within the UI. This program encourages trainees, including those from traditionally underrepresented populations, to pursue a career in lung disease research and provides the opportunity to train in a variety of research disciplines related to lung research (e.g., molecular biology, cell biology, physiology, genetics, epidemiology, biostatistics, radiology, neonatology and pediatrics) in order to improve the health and well-being of individuals living with lung disease throughout the world.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL007638-28
Application #
8495382
Study Section
Special Emphasis Panel (ZHL1-CSR-M (F1))
Program Officer
Colombini-Hatch, Sandra
Project Start
1986-07-01
Project End
2016-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
28
Fiscal Year
2013
Total Cost
$930,484
Indirect Cost
$64,318
Name
University of Iowa
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J et al. (2017) Cystic Fibrosis Transmembrane Conductance Regulator Potentiation as a Therapeutic Strategy for Pulmonary Edema: A Proof-of-Concept Study in Pigs. Crit Care Med 45:e1240-e1246
Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D et al. (2017) The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Mol Metab 6:1468-1479
Cook, Daniel P; Adam, Ryan J; Zarei, Keyan et al. (2017) CF airway smooth muscle transcriptome reveals a role for PYK2. JCI Insight 2:
Cook, Daniel P; Rector, Michael V; Bouzek, Drake C et al. (2016) Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility. Am J Respir Crit Care Med 193:417-26
Rauckhorst, Adam J; Taylor, Eric B (2016) Mitochondrial pyruvate carrier function and cancer metabolism. Curr Opin Genet Dev 38:102-109
Gray, Lawrence R; Rauckhorst, Adam J; Taylor, Eric B (2016) A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity. J Biol Chem 291:7409-17
Bartlett, Jennifer A; Ramachandran, Shyam; Wohlford-Lenane, Christine L et al. (2016) Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. Am J Respir Crit Care Med 194:845-854
Adam, Ryan J; Hisert, Katherine B; Dodd, Jonathan D et al. (2016) Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities. JCI Insight 1:e86183
Spengler, Ryan M; Zhang, Xiaoming; Cheng, Congsheng et al. (2016) Elucidation of transcriptome-wide microRNA binding sites in human cardiac tissues by Ago2 HITS-CLIP. Nucleic Acids Res 44:7120-31
Lane-Cordova, Abbi D; Witmer, Jordan R; Dubishar, Kaitlyn et al. (2016) High trans but not saturated fat beverage causes an acute reduction in postprandial vascular endothelial function but not arterial stiffness in humans. Vasc Med 21:429-436

Showing the most recent 10 out of 91 publications