This is the second competing renewal application for Yale University's Vascular Research Postdoctoral T32. Of fellows who have completed training to date, 86% have obtained academic faculty positions, and 86% have entered independent scientific careers, strong indicators of program success. The continued goal is to provide laboratory and translational research training for highly qualified physician (M.D. and M.D. /Ph.D.) and Ph.D. postdoctoral fellows in vascular biology, in preparation for careers as independent investigators in blood vessel biology- and medicine-related disciplines. Selection of trainees will be based on a commitment to vascular biology and strong prior research experience or potential of same. Applications will be encouraged from clinical and basic science departments, with a nationwide competition for 7 yearly slots. Minority applicants will be specifically solicited. The training will be mentor-based, also including advisory committees and didactic courses. The minimum duration of training will be 2 years, with the majority of fellows remaining in the program for 3 years. The Cardiovascular Medicine Division and Yale's Interdisciplinary Program in Vascular Biology and Therapeutics will be the foundations for the program. A key asset to this training program is Yale's interdisciplinary strength in vascular biology. Departmental affiliations for participating faculty include Cardiovascular Medicine, Pulmonary and Critical Care Medicine, Immunobiology, Pharmacology, Molecular Cellular and Developmental Biology, Pathology, Genetics, Bioengineering, Physiology, Epidemiology and Public Health, and Cardiothoracic Surgery. This is a testimony to the wide spectrum of strong vascular biology laboratories at Yale and the program's institutional nature. The faculty was chosen based on impressive histories of mentorship, ongoing vascular research productivity, strong extramural support and commitment to serve as mentors within the program. Examples of research opportunities include: (1) molecular determinants and consequences of leukocyte-endothelial cell interactions;(2) molecular imaging of angiogenesis and vascular remodeling utilizing nuclear and MR imaging in animal models;(3) mapping and identification of genes that contribute to the development of vascular disease (arterio-venous malformation, coronary artery disease) in humans;(4) engineering of vascular biomaterials, and molecular determinants of healing responses post-implantation;and (5) generation of angiogenic gene regulators for use in clinical trials. This represents a wide range of disease-related vascular research, with key translational components. Trainee progress will be monitored by each mentor, the trainee's advisory committee and the Program Director. It is the expectation that we will train future national and international leaders in vascular research. Cardiovascular disease is the leading cause of death in the U.S., and a major cause of mortality world-wide. This program will provide important opportunities for individuals from multiple disciplines to eventually lead high impact efforts at reducing the incidence of, and improving outcomes in, cardiovascular disease.

Public Health Relevance

The goal of this postdoctoral training program is to train future leaders in areas of vascular biology and cardiovascular research. Heart disease is the leading cause of death in the U.S. As such, defining the causes and mechanisms of disease continues to be of great significance. This training program, through its mentoring of future leaders in cardiovascular research, will have an important impact on health in the U.S.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Scott, Jane
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Internal Medicine/Medicine
Schools of Medicine
New Haven
United States
Zip Code
Sawyer, Andrew J; Tian, Weiming; Saucier-Sawyer, Jennifer K et al. (2014) The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials 35:6698-706
Padmanabhan, Jagannath; Kinser, Emily R; Stalter, Mark A et al. (2014) Engineering cellular response using nanopatterned bulk metallic glass. ACS Nano 8:4366-75
Mehra, Vishal C; Jackson, Elias; Zhang, Xian M et al. (2014) Ceramide-activated phosphatase mediates fatty acid-induced endothelial VEGF resistance and impaired angiogenesis. Am J Pathol 184:1562-76
Grutzendler, Jaime; Murikinati, Sasidhar; Hiner, Bennett et al. (2014) Angiophagy prevents early embolus washout but recanalizes microvessels through embolus extravasation. Sci Transl Med 6:226ra31
Kim, Kyung Hee; Young, Bryan D; Bender, Jeffrey R (2014) Endothelial estrogen receptor isoforms and cardiovascular disease. Mol Cell Endocrinol 389:65-70
Morrison, Alan R; Yarovinsky, Timur O; Young, Bryan D et al. (2014) Chemokine-coupled ?2 integrin-induced macrophage Rac2-Myosin IIA interaction regulates VEGF-A mRNA stability and arteriogenesis. J Exp Med 211:1957-68
Seidelmann, Sara B; Lighthouse, Janet K; Greif, Daniel M (2014) Development and pathologies of the arterial wall. Cell Mol Life Sci 71:1977-99
Sheikh, Abdul Q; Lighthouse, Janet K; Greif, Daniel M (2014) Recapitulation of developing artery muscularization in pulmonary hypertension. Cell Rep 6:809-17
Ross, Tyler D; Coon, Brian G; Yun, Sanguk et al. (2013) Integrins in mechanotransduction. Curr Opin Cell Biol 25:613-8
Yi, Tai; Fogal, Birgit; Hao, Zhengrong et al. (2012) Reperfusion injury intensifies the adaptive human T cell alloresponse in a human-mouse chimeric artery model. Arterioscler Thromb Vasc Biol 32:353-60

Showing the most recent 10 out of 35 publications