This proposal is for renewal of our postdoctoral research training grant in Immunohematology and Transfusion Medicine that was initiated in 2001. The program provides a highly organized 2-3 year program of focused dedicated didactics, seminars, and, most importantly, an intense research experience with one of 24 well-established, highly interactive, and well-funded cross-disciplinary mentors representing eight different primary departments. The goal is to generate productive MD and MD/PhD physician- scientists as well as PhD scientists and clinician-scientists, who will be launched on a lifelong investigative career pursuing basic and translational research in this underrepresented field. Careful career development by an individualized "Career &Research Committee" is a hallmark of the program. Three degree-granting "tracks" are also available, in addition to the core post-doctoral program: an Investigative Medicine PhD available to MD-only trainees who wish to obtain a more expansive research background mimicking that of an MD/PhD;a Masters of Health Sciences under the aegis of the Yale CTSA for those with a clinical/translational research goal;and a Masters of Biomedical Engineering for trainees with a past basic biomedicine emphasis who wish to add an engineering dimension to their knowledge base. Drawn from a candidate pool focused on those whose background is Laboratory Medicine &Pathology (a pool which has always included at least 10 fold more excellent candidates than are accepted into the program), outcomes have been quite positive. Of the graduates of the T32 program, 25% have successfully completed a degree-granting track, 50% have secured tenure track academic investigative positions, with the remainder retained in research at earlier career development stages;all have obtained some subsequent funding with 25% moving directly to K08 awards. The T32 program currently supports four post-doctoral positions per year and, based on results and candidate pool, we are requesting an increase to six positions. The "core" T32 is "leveraged", since the entire Laboratory Medicine Departmental Immunohematology-Transfusion Medicine training program is greater than the T32 - it includes individuals on other funding mechanisms. When they are included, 69% of graduates have investigative tenure track positions and 38% have attained PI-level R01 funding. We believe that this program fills an important research training need both at Yale and nationally.

Public Health Relevance

As stated recently in the NIH program announcement PAR-10-034: Research aimed at improving the safety and availability of the blood supply and the practice of transfusion medicine is critical to public health since about five million patients receive blood transfusions every yea in the U.S. It is critical to train the next generation of investigators who can conduct basic, translational, and clinical research in Immunohematology and Transfusion Medicine, in order to improve the effectiveness of immunotherapeutic cellular therapy and blood cell / bone marrow / stem cell transplantation techniques, enhance the safety of the blood supply by understanding pathogen interactions, understand the effects of transfusion on a patient's immune system, and bring new bioengineering technologies to improving all these areas of clinical care.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL007974-12
Application #
8420413
Study Section
Special Emphasis Panel (ZHL1-CSR-M (O1))
Program Officer
Welniak, Lisbeth A
Project Start
2001-08-01
Project End
2017-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
12
Fiscal Year
2013
Total Cost
$404,924
Indirect Cost
$26,854
Name
Yale University
Department
Pathology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Ryder, Alex B; Nachbagauer, Raffael; Buonocore, Linda et al. (2016) Vaccination with Vesicular Stomatitis Virus-Vectored Chimeric Hemagglutinins Protects Mice against Divergent Influenza Virus Challenge Strains. J Virol 90:2544-50
Foxman, Ellen F; Storer, James A; Vanaja, Kiran et al. (2016) Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proc Natl Acad Sci U S A 113:8496-501
Qin, Lingfeng; Li, Guangxin; Kirkiles-Smith, Nancy et al. (2016) Complement C5 Inhibition Reduces T Cell-Mediated Allograft Vasculopathy Caused by Both Alloantibody and Ischemia Reperfusion Injury in Humanized Mice. Am J Transplant :
Rausch, M K; Karniadakis, G E; Humphrey, J D (2016) Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach. Biomech Model Mechanobiol :
Sanada, Chad; Xavier-Ferrucio, Juliana; Lu, Yi-Chien et al. (2016) Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 128:923-33
Samie, Mohammad; Cresswell, Peter (2015) The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat Immunol 16:729-36
Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E et al. (2015) Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci U S A 112:827-32
Rausch, Manuel K; Humphrey, Jay D (2015) A microstructurally inspired damage model for early venous thrombus. J Mech Behav Biomed Mater 55:12-20
Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice et al. (2015) A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine. J Virol 89:2820-30
Jane-wit, Dan; Surovtseva, Yulia V; Qin, Lingfeng et al. (2015) Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes. Proc Natl Acad Sci U S A 112:9686-91

Showing the most recent 10 out of 58 publications