Research in vascular biology has been responsible for remarkable changes in how we prevent, monitor and treat cardiovascular disease. The last fifty years have witnessed a transformation in patient care, increase in life expectancy and improvement in the quality of lives of those afflicted with vascular problems. It is through training of the next generation that we have made these achievements and it is through training that we will continue to make additional improvements in prevention and health care. The present application request funds to continue the interdisciplinary training of graduate students and post-doctoral fellows in vascular biology. In particular we aim at developing scientists who can: (1) """"""""speak"""""""" various languages (metabolomics, pathology, molecular biology, genomics, and biomathematics), (2) integrate information and think towards (3) solving real clinical problems. To achieve these goals we have developed a multi-mentorship approach, novel didactic components and incorporated an interactive exposure to medicine into the structure of the training. UCLA houses a tremendous resource of interdisciplinary groups whose research focuses in vascular biology. The group includes 27 laboratories that currently offer training to 124 graduate students and post-doctoral fellows. It is this community that constitutes the pillars of a unique training program for the next generation of investigators in vascular biology. Being the only Vascular Biology Training grant in Los Angeles and one in four in California, we have trained 28 graduate students and post-doctoral fellows since 2002. These have produced 101 peer-reviewed publications while in the program and 9 have progressed to develop independent research groups in industry and universities across the nation. Furthermore, the activities associated with the training program have catalyzed interactions between groups intensifying collaborative activities. On the average 10 peer reviewed publications show the participation of two or more laboratories each year. Here, we request funding for 7 pre and 3 post-doctoral fellows / year, in which 2-3 new graduate students and either 1 or 2 post-doctoral fellows will enter the program each year. It is also our goal to actively seek and promote training and engagement of underrepresented minority groups (since 2002 we have a 21% minority trainee representation). It is an important objective of this program to be at the forefront of innovation in vascular biology education with strong emphasis in research integrity and ethics. In this current renewal we proposed the implementation of several new strategies to attain these goals and further improve the participation of minorities and the quality of training in vascular research. The success of this training program has engendered enthusiasm by the School of Medicine, College of Letters and Sciences and the Graduate Division at UCLA all of which have committed to provide additional institutional support towards activities developed by the VBTP.

Public Health Relevance

Diseases that affect blood vessels continue to be the number one killer in Western societies. This application is relevant because it proposes unique, comprehensive and interdisciplinary training to the next generation of vascular biologists. It is our objective to produce individuals that will lead our next steps towards solving current and future medical problems in vascular disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Scott, Jane
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Arts and Sciences
Los Angeles
United States
Zip Code
He, Huanhuan; Mack, Julia J; Güç, Esra et al. (2016) Perivascular Macrophages Limit Permeability. Arterioscler Thromb Vasc Biol 36:2203-2212
Seldin, Marcus M; Meng, Yonghong; Qi, Hongxiu et al. (2016) Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J Am Heart Assoc 5:
Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung et al. (2016) RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. J Clin Invest 126:195-206
Allan, Christopher M; Larsson, Mikael; Hu, Xuchen et al. (2016) An LPL-specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1. J Lipid Res 57:1889-1898
Kenagy, Richard D; Civelek, Mete; Kikuchi, Shinsuke et al. (2016) Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 64:202-209.e6
Sallam, Tamer; Jones, Marius C; Gilliland, Thomas et al. (2016) Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 534:124-8
Valenzuela, N M; Trinh, K R; Mulder, A et al. (2015) Monocyte recruitment by HLA IgG-activated endothelium: the relationship between IgG subclass and FcγRIIa polymorphisms. Am J Transplant 15:1502-18
Thomas, K A; Valenzuela, N M; Gjertson, D et al. (2015) An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA. Am J Transplant 15:2037-49
Parks, Brian W; Sallam, Tamer; Mehrabian, Margarete et al. (2015) Genetic architecture of insulin resistance in the mouse. Cell Metab 21:334-46
Li, Fang; Wei, Jennifer; Valenzuela, Nicole M et al. (2015) Phosphorylated S6 kinase and S6 ribosomal protein are diagnostic markers of antibody-mediated rejection in heart allografts. J Heart Lung Transplant 34:580-7

Showing the most recent 10 out of 104 publications