Northwestern University's Lung Sciences Training Program (NULSTP) trains highly motivated pre- and postdoctoral trainees for an academic career in the science of lung diseases. The Program offers trainees a curriculum that includes didactic coursework and provides basic and/or clinical research training, supervision and guidance by an interdisciplinary group of mentors. In this competitive renewal, we have included colleagues from the department of Medicine, Cell and Molecular Biology, Biochemistry, Molecular Biology, and Biomedical Engineering. The Program focuses on the following specific goals: 1) To provide stipend support for the development of pre-doctoral and post- doctoral PhD and MD scientists with commitment to an academic career. 2) To provide mentorship by senior investigators. 3) To provide the scientific environment, training and skilled supervision required for the development of independent investigators. 4) To provide the educational resources in the form of didactic courses and collaborative interactions that will foster the skills required for an independent research career. 5) To create an administrative structure that facilitates the trainee's career progression required to pursue an academic career. 6) To protect research trainees from activities not directly related to research that may compete for their time. 7) To establish an ongoing evaluation process for determining whether or not the program is meeting its goals and objectives. The long-term goal of this program is to encourage bright, well-trained pre-doctoral candidates and post-doctoral MDs and PhDs to pursue careers in lung science research, make them knowledgeable about the complexities associated with conducting scientifically and ethically sound research, and maximize the likelihood they will develop into independent investigators. The program builds upon the strengths of current training initiatives in the basic sciences, translational, public health, and health services research and on the considerable scientific and research training experiences of the faculty participating in our training grant. During the first ~9 years of this program, 39 trainees were supported by our Training Program. Of the 13 pre-doctoral trainees, 2 have accepted faculty appointments, 4 are in prestigious post-doctoral programs, 1 is completing the MSTP program, 6 are continuing their pre-doctoral training. Of the 26 post-doctoral fellows, 8 are now faculty members in our division, while 8 are faculty members in outside academic institutions, 7 are continuing their training. Many of our trainees have been competitive for individual training awards and have obtained further funding. The renewal of this training program will enhance our ability to support excellent trainees and provide the scientific community with well-trained physicians and scientists that are committed to enhancing research in the field of lung biology. All of these factors make Northwestern University an ideal site for this Training Program in Lung Sciences.

Public Health Relevance

There is an ongoing need to train outstanding investigators to research the biology of lung diseases. Northwestern University's Multidisciplinary Training Program in Lung Sciences has been structured to meet the evolving needs of the lung research community.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Colombini-Hatch, Sandra
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Almassalha, Luay M; Bauer, Greta M; Chandler, John E et al. (2016) Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy. Proc Natl Acad Sci U S A 113:E6372-E6381
Dong, Biqin; Almassalha, Luay M; Stypula-Cyrus, Yolanda et al. (2016) Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proc Natl Acad Sci U S A 113:9716-21
Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon et al. (2016) TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions. Mol Cell 61:199-209
Hamanaka, Robert B; Weinberg, Samuel E; Reczek, Colleen R et al. (2016) The Mitochondrial Respiratory Chain Is Required for Organismal Adaptation to Hypoxia. Cell Rep 15:451-9
Chandel, Navdeep S; Avizonis, Dania; Reczek, Colleen R et al. (2016) Are Metformin Doses Used in Murine Cancer Models Clinically Relevant? Cell Metab 23:569-70
Dong, Biqin; Almassalha, Luay; Urban, Ben E et al. (2016) Super-resolution spectroscopic microscopy via photon localization. Nat Commun 7:12290
Brazee, Patricia; Dada, Laura A; Sznajder, Jacob I (2016) Role of Linear Ubiquitination in Health and Disease. Am J Respir Cell Mol Biol 54:761-8
Lee, C K; Yang, Y; Chen, C et al. (2016) Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death. Oncogene 35:1988-95
Hutchison, Paul J; McLaughlin, Katie; Corbridge, Tom et al. (2016) Dimensions and Role-Specific Mediators of Surrogate Trust in the ICU. Crit Care Med 44:2208-2214
dos Santos, Gimena; Rogel, Micah R; Baker, Margaret A et al. (2015) Vimentin regulates activation of the NLRP3 inflammasome. Nat Commun 6:6574

Showing the most recent 10 out of 90 publications