This program will train 6 postdoctoral fellows annually in mechanisms and Innovation in vascular disease. The program goals include rigorous training in the scientific method, critical analysis, logical reasoning and independent thinking, all within a highly collaborative working group. Trainees will develop a focused area of translational vascular research expertise and will be exposed to a wide range of complementary research techniques. Mentors will provide collegial and productive collaboration, and help to hone skills in oral and written communication, and to instill respect for the responsible conduct of research. Fellows will undergo a minimum two-year education and research program, although we only intend to fund the first year through the institutional T32. Fellows will be encouraged and mentored in their development of funding proposals for the second year. The overarching goal for this program is to produce researchers who are well-schooled in the fundamental problems of vascular disease, and are driven to find innovative strategies to tackle those problems, thereby translating basic research into clinical success. Fellows will receive their training in a multidisciplinary milieu of fundamental, translational and clinical research in vascular biology and disease. The Stanford Cardiovascular Institute (CVI) offers a unique platform by which to train the next generation of basic and translational scientists. Mentors for the proposed program, all members of the CVI, come not only from vascular medicine, but also from materials science, bioengineering, imaging, and health research and policy. Brought together in a collaborative Institute, these scientists share a common interest in the mechanisms behind vascular development and disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Scott, Jane
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Piening, Brian D; Zhou, Wenyu; Contrepois, Kévin et al. (2018) Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Syst 6:157-170.e8
Foster, Abbygail A; Dewi, Ruby E; Cai, Lei et al. (2018) Protein-engineered hydrogels enhance the survival of induced pluripotent stem cell-derived endothelial cells for treatment of peripheral arterial disease. Biomater Sci 6:614-622
Keating, Brendan J; Pereira, Alexandre C; Snyder, Michael et al. (2018) Applying genomics in heart transplantation. Transpl Int 31:278-290
Itoga, Nathan K; Wu, Tiffany; Dake, Michael D et al. (2018) Acute Type B Dissection Causing Collapse of EVAR Endograft and Iliac Limb Occlusion. Ann Vasc Surg 46:206.e1-206.e4
Rajaei, Sheeva; Rigdon, Joseph; Crowe, Susan et al. (2018) Breastfeeding Duration and the Risk of Coronary Artery Disease. J Womens Health (Larchmt) :
Mardinoglu, Adil; Wu, Hao; Bjornson, Elias et al. (2018) An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metab 27:559-571.e5
Itoga, Nathan K; Tawfik, Daniel S; Lee, Charles K et al. (2018) Association of Blood Pressure Measurements With Peripheral Artery Disease Events. Circulation 138:1805-1814
Itoga, Nathan K; Rothenberg, Kara A; Suarez, Paola et al. (2018) Metformin prescription status and abdominal aortic aneurysm disease progression in the U.S. veteran population. J Vasc Surg :
Rhee, Siyeon; Chung, Jae I; King, Devin A et al. (2018) Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat Commun 9:368
Shang, Jessica K; Esmaily, Mahdi; Verma, Aekaansh et al. (2018) Patient-specific multiscale modeling of the Assisted Bidirectional Glenn. Ann Thorac Surg :

Showing the most recent 10 out of 91 publications