Basic and translational research in hematology has been at the cutting edge of recent advances in our understanding of the molecular pathophysiology of disease. The former Harvard Medical School Training Program in Molecular Hematology had a distinguished 25-year track record in training graduate students and postdoctoral fellows in the study of blood and its disorders, with many graduates of the program going on to highly successful academic careers. The past 25 years have seen many changes in the landscape of hematology-oncology in the Harvard Medical area, with the merging of the Hematology program at the Brigham and Women's Hospital with the oncology programs at the Massachusetts General Hospital and the Dana-Farber to form a combined Hematology-Oncology fellowship. This has had many positive effects on the opportunities for clinical and research training, complemented by a proliferation of training programs. At the same time, an explosion of new technologies has ushered in an era in biomedical research that offers exciting opportunities for major breakthroughs in our understanding of human disease, offering hope for new clinical paradigms that can transform the treatment of many hematologic disorders. However, the loss of a dedicated Hematology fellowship has made us acutely aware of the importance of nurturing physician scientists dedicated to the study of hematology. Indeed, the disappearance of free-standing hematology fellowships nationwide and the shrinking numbers of Hematology trainees signals an urgent need to encourage future academic hematologists. Therefore, in this new application, we seek to extend the success of the previous Hematology training program through a newly configured faculty and a more defined focus. The program will be limited to postdoctoral positions, and the selection process will place high priority on trainin physician- scientists focused on hematology. Potential candidates will be nominated by a potential preceptor or program leader, and applications will be reviewed by a Steering Committee. Final appointments will be made by the Program Directors. The primary site of training will be the preceptor's laboratory, but each trainee will be expected to participate in relevant seminars and courses within the HMS community. Each trainee will also assemble a training committee that will monitor research progress with annual formal presentations. We will strongly encourage the investigation of benign hematologic disorders in the areas of red cell disorders, iron metabolism, hemostasis and thrombosis, and neutrophil disorders, as well as hematologic malignancies such as leukemia, myelodysplasia, and myeloproliferative neoplasms. This strict focus on Hematology will distinguish this grant from other Harvard-related training grants, fulfilling a need that is not answered by any other training grant within adult medicine.

Public Health Relevance

Research in hematology has been at the cutting edge of medical advances for decades, providing novel paradigms for the study of human disease. Nevertheless, hematologic diseases remain major public health problems, and the number of physician-scientists dedicated to the study of hematology is declining. This grant is focused on clinician scientists and aims to support a laboratory-based training program to nurture the next generation of hematologists focused on research in molecular hematology.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
1T32HL116324-01
Application #
8414187
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Chang, Henry
Project Start
2013-08-01
Project End
2018-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
1
Fiscal Year
2013
Total Cost
$266,903
Indirect Cost
$19,237
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Townsend, Elizabeth C; Murakami, Mark A; Christodoulou, Alexandra et al. (2016) The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell 29:574-86
Machlus, Kellie R; Johnson, Kelly E; Kulenthirarajan, Rajesh et al. (2016) CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood 127:921-6
Bekendam, Roelof H; Bendapudi, Pavan K; Lin, Lin et al. (2016) A substrate-driven allosteric switch that enhances PDI catalytic activity. Nat Commun 7:12579
Wu, Shuo-Chieh; Li, Loretta S; Kopp, Nadja et al. (2015) Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia. Cancer Cell 28:29-41
Chen, Edwin; Schneider, Rebekka K; Breyfogle, Lawrence J et al. (2015) Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood 125:327-35
Green, Alexa S; Maciel, Thiago T; Hospital, Marie-Anne et al. (2015) Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv 1:e1500221
Au, Brandon K C; Gooley, Ted A; Armand, Philippe et al. (2015) Reevaluation of the pretransplant assessment of mortality score after allogeneic hematopoietic transplantation. Biol Blood Marrow Transplant 21:848-54
Gibson, Christopher J; Davids, Matthew S (2015) BCL-2 Antagonism to Target the Intrinsic Mitochondrial Pathway of Apoptosis. Clin Cancer Res 21:5021-9
Mirabello, Lisa; Macari, Elizabeth R; Jessop, Lea et al. (2014) Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood 124:24-32
Lane, Andrew A; Chapuy, Bjoern; Lin, Charles Y et al. (2014) Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat Genet 46:618-23