Ion channels and transporter proteins are ubiquitous molecules that serve a variety of important physiological functions, provide targets for many types of pharmacological agents, and are encoded by genes that can be the basis for inherited diseases affecting the nervous system and other tissues. This proposal describes the continuation of a Training Program in Ion Channel and Transporter Biology that will provide multidisciplinary research training for postdoctoral scientists. This highly focused training program involves 30 NIH-funded preceptors (aggregate funding >$31,500,000 direct costs/year) affiliated with 13 different academic departments and 10 research centers at Vanderbilt University with strong records of accomplishments in the ion channel and transporter field, and with a deep commitment to training postdoctoral fellows. This interdepartmental training program capitalizes on a nearly 20-year history of institutional and multidisciplinary strength in this research field. The program began initially in 2001 with only 19 faculty and has successfully filled all funded positions since that time. Although the training program originally included predoctoral training, the consensus of the participating faculty members was to focus the program on postdoctoral trainees to enable a more coherent training program and to expand the number of available postdoctoral positions. Postdoctoral trainees will be selected from the pool of applicants that apply to preceptor laboratories as well as by an annual recruitment event hosted by Vanderbilt University. A multi-faceted recruitment strategy will continue to attract highly qualified individuals from underrepresented groups. In addition to intensive research experiences, trainees will have didactic course requirements that include a focused course on grant writing, an innovative seminar series devoted to inspiring translational research, formal mentoring and career guidance. The high caliber of faculty mentors, the interdisciplinary nature of training opportunities, the strong institutional strengths combine to foster a unique environment suited to the goal of the training program, which is to develop scientists with strong commitments to academic biomedical research in the area of ion channel and transporter biology.

Public Health Relevance

Project Narrative Ion channels and transporter proteins are important molecules that serve a variety of important cellular functions, provide targets for many types of drugs, and are involved in many acquired and inherited diseases affecting the nervous system and other organs. This proposal describes the continuation of a Training Program in Ion Channel and Transporter Biology that will provide multidisciplinary research training for scientists in this field.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Institutional National Research Service Award (T32)
Project #
5T32NS007491-12
Application #
8263425
Study Section
Special Emphasis Panel (ZNS1-SRB-P (56))
Program Officer
Korn, Stephen J
Project Start
2001-07-20
Project End
2016-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
12
Fiscal Year
2012
Total Cost
$215,711
Indirect Cost
$15,979
Name
Vanderbilt University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Makita, Naomasa; Yagihara, Nobue; Crotti, Lia et al. (2014) Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet 7:466-74
Matsumoto, Rae R; Seminerio, Michael J; Turner, Ryan C et al. (2014) Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther 144:28-40
Birmingham, William R; Starbird, Chrystal A; Panosian, Timothy D et al. (2014) Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 10:392-9
Peng, Dungeng; Kim, Ji-Hun; Kroncke, Brett M et al. (2014) Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel. Biochemistry 53:2032-42
Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J et al. (2014) Sigma receptors as potential therapeutic targets for neuroprotection. Eur J Pharmacol 743:42-7
Robson, Matthew J; Turner, Ryan C; Naser, Zachary J et al. (2014) SN79, a sigma receptor antagonist, attenuates methamphetamine-induced astrogliosis through a blockade of OSMR/gp130 signaling and STAT3 phosphorylation. Exp Neurol 254:180-9
Mittendorf, Kathleen F; Kroncke, Brett M; Meiler, Jens et al. (2014) The homology model of PMP22 suggests mutations resulting in peripheral neuropathy disrupt transmembrane helix packing. Biochemistry 53:6139-41
Conrad, Kelly L; Louderback, Katherine M; Milano, Elana J et al. (2013) Assessment of the impact of pattern of cocaine dosing schedule during conditioning and reconditioning on magnitude of cocaine CPP, extinction, and reinstatement. Psychopharmacology (Berl) 227:109-16
Wen, Po-Chao; Verhalen, Brandy; Wilkens, Stephan et al. (2013) On the origin of large flexibility of P-glycoprotein in the inward-facing state. J Biol Chem 288:19211-20
Shonesy, Brian C; Wang, Xiaohan; Rose, Kristie L et al. (2013) CaMKII regulates diacylglycerol lipase-? and striatal endocannabinoid signaling. Nat Neurosci 16:456-63

Showing the most recent 10 out of 33 publications