A key objective of the INIA programs is to transform research on causes, prevention, and treatment of alcoholism. Integration of data sets and analytic methods across a broad spectrum of research is critical to success. This INIA UOI Core application is built on the success of several powerful INIA web services and data resources, including GeneNetwork, WebGestalt, and the Ontological Discovery Environment (ODE). However, our aims in this renewal are a direct outgrowth of rapid changes in genomics and neuroscience, in particular, next-generation sequencing. A theme of this core is innovation by integration. The far more pervasive use of web services in neuroscience over the last five years - Allen Brain Atlas, DAVID, ODE, Galaxy, GeneNetwork, GeneWiki, KEGG, and the Neuroscience Information Framework - represents a great research opportunity for our INIA teams. But these resources often have a steep learning curve and are difficult to use together. One of our goals is to assemble these resources together with large new data sets in a context useful to NIAAA researchers. The INIA Translational Web Services core has these aims: (1) Process, analyze, and distribute massive array and next-generation data sets for both INIA consortia;(2) Integrate INIA consortia data sets from rodents, non-human primates, and humans into GeneNetwork and significantly enhance tools for bidirectional translational queries;(3) Provide database support, training, and documentation in bioinformatics, genetics, and next-gen genomic tools to other INIA projects and cores.

Public Health Relevance

This INIA Bioinformatics Core will provide crucial support to both INIAs for data integration. Our special emphasis is on securing and analyzing massive genomic data sets generated using arrays and next generation sequencing systems. We are also building tools to enable much more facile translation of discoveries from animal models of alcoholism to human populations and groups who are at risk.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1)
Program Officer
Grandison, Lindsey
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Tennessee Health Science Center
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Nimitvilai, Sudarat; Uys, Joachim D; Woodward, John J et al. (2017) Orbitofrontal Neuroadaptations and Cross-Species Synaptic Biomarkers in Heavy-Drinking Macaques. J Neurosci 37:3646-3660
Lopez, Marcelo F; Miles, Michael F; Williams, Robert W et al. (2017) Variable effects of chronic intermittent ethanol exposure on ethanol drinking in a genetically diverse mouse cohort. Alcohol 58:73-82
van der Vaart, Andrew D; Wolstenholme, Jennifer T; Smith, Maren L et al. (2017) The allostatic impact of chronic ethanol on gene expression: A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort. Alcohol 58:93-106
Porcu, Patrizia; O'Buckley, Todd K; Lopez, Marcelo F et al. (2017) Initial genetic dissection of serum neuroactive steroids following chronic intermittent ethanol across BXD mouse strains. Alcohol 58:107-125
Ashbrook, D G; Mulligan, M K; Williams, R W (2017) Post-genomic behavioral genetics: From revolution to routine. Genes Brain Behav :
Simecek, Petr; Forejt, Jiri; Williams, Robert W et al. (2017) High-Resolution Maps of Mouse Reference Populations. G3 (Bethesda) 7:3427-3434
Rinker, Jennifer A; Fulmer, Diana B; Trantham-Davidson, Heather et al. (2017) Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol 58:33-45
Zuo, Lingjun; Tan, Yunlong; Li, Chiang-Shan R et al. (2016) Associations of rare nicotinic cholinergic receptor gene variants to nicotine and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 171:1057-1071
Shi, Xiao; Walter, Nicole A R; Harkness, John H et al. (2016) Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function. PLoS One 11:e0152581
Neuner, Sarah M; Garfinkel, Benjamin P; Wilmott, Lynda A et al. (2016) Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. Neurobiol Aging 46:58-67

Showing the most recent 10 out of 81 publications