Diarrheal disease is the second most common cause of death among children under five years of age globally, and infectious diarrhea is the second leading cause of global morbidity. Vibrio cholerae causes severe secretory diarrhea in humans, and is a prototypical mucosal infection that does not invade the intestinal epithelium;V. cholerae infection thus serves as an excellent model for the study of mucosal immunity and vaccination. Unfortunately, protective immunity following cholera is not currently understood, and available cholera vaccines either fail to produce full protective efficacy or induce less than optimal and relatively short-lived immune responses that fall to baseline within 6-36 months of vaccination. This is in comparison to natural infection with V. cholerae that induces protective immunity that lasts for 3-10 years. Serum vibriocidal and other serum antibody responses wane within 6-12 months of infection, suggesting that these current immunologic markers cannot be used as correlates of longer-term protective immunity. We have data to suggest that memory B cell responses to T-dependent protein antigens develop following V. cholerae infection and persist for at least one year, while memory B cell responses to a T-independent antigen, LPS, develop following cholera, but appear to wane by 9-12 months following infection. We have additional preliminary evidence of a CD4+ T helper cell response following V. cholerae infection, and we hypothesize that this response is necessary for the development and maintenance of B cell memory at the mucosal surface, that the T cell response may be qualitatively or quantitatively different between natural infection and cholera vaccination, and that these differences may explain the lessened efficacy of current vaccines for cholera and other mucosal infections. To address these questions, we propose five specific aims: (1) Characterize immune responses in blood following natural cholera, focusing on development and maintenance of memory B cell and T cell responses;(2) Evaluate mucosal innate and acquired immune responses following cholera using endoscopically obtained duodenal (EGD) samples, and correlate with responses seen in blood;(3) Assess innate and acquired immune responses early after exposure in household contacts to determine correlates of subsequent protective immunity to cholera;(4) Assess immune responses following cholera vaccination with the current killed oral rBS-WC cholera vaccine (synergizing with an on-going and separately funded cholera vaccine study), and compare responses to those following natural cholera;and (5) Evaluate host factors influencing susceptibility and immune responses to cholera. This proposal is built upon an on-going collaborative effort between researchers at the Massachusetts General Hospital-Harvard University and the ICDDR,B in Dhaka, Bangladesh.

Public Health Relevance

Cholera affects 5-7 million individuals each year, killing over 100,000, globally. Identification of protective immunity against cholera could not only directly affect cholera vaccination strategies, but could be applicable to the development of improved vaccines against other mucosal pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01AI058935-13
Application #
8261730
Study Section
Special Emphasis Panel (ZAI1-GSM-M (J1))
Program Officer
Cassels, Frederick J
Project Start
2000-09-05
Project End
2015-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
13
Fiscal Year
2012
Total Cost
$711,135
Indirect Cost
$220,560
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Hatzios, Stavroula K; Abel, Sören; Martell, Julianne et al. (2016) Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 12:268-74
Uddin, Muhammad Ikhtear; Islam, Shahidul; Nishat, Naoshin S et al. (2016) Biomarkers of Environmental Enteropathy are Positively Associated with Immune Responses to an Oral Cholera Vaccine in Bangladeshi Children. PLoS Negl Trop Dis 10:e0005039
Kauffman, Robert C; Bhuiyan, Taufiqur R; Nakajima, Rie et al. (2016) Single-Cell Analysis of the Plasmablast Response to Vibrio cholerae Demonstrates Expansion of Cross-Reactive Memory B Cells. MBio 7:
Aktar, Amena; Rahman, M Arifur; Afrin, Sadia et al. (2016) O-Specific Polysaccharide-Specific Memory B Cell Responses in Young Children, Older Children, and Adults Infected with Vibrio cholerae O1 Ogawa in Bangladesh. Clin Vaccine Immunol 23:427-35
Dalia, Ankur B; Seed, Kimberley D; Calderwood, Stephen B et al. (2015) A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. Proc Natl Acad Sci U S A 112:10485-90
David, Lawrence A; Weil, Ana; Ryan, Edward T et al. (2015) Gut microbial succession follows acute secretory diarrhea in humans. MBio 6:e00381-15
Chowdhury, Fahima; Kuchta, Alison; Khan, Ashraful Islam et al. (2015) The increased severity in patients presenting to hospital with diarrhea in Dhaka, Bangladesh since the emergence of the hybrid strain of Vibrio cholerae O1 is not unique to cholera patients. Int J Infect Dis 40:9-14
Leung, Daniel T; Das, Sumon K; Malek, M A et al. (2015) Concurrent Pneumonia in Children Under 5 Years of Age Presenting to a Diarrheal Hospital in Dhaka, Bangladesh. Am J Trop Med Hyg 93:831-5
Sayeed, Md Abu; Bufano, Meagan Kelly; Xu, Peng et al. (2015) A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice. PLoS Negl Trop Dis 9:e0003881
Bhuiyan, Taufiqur Rahman; Hoq, Mohammad Rubel; Nishat, Naoshin Sharmin et al. (2015) Enumeration of Gut-Homing β7-Positive, Pathogen-Specific Antibody-Secreting Cells in Whole Blood from Enterotoxigenic Escherichia coli- and Vibrio cholerae-Infected Patients, Determined Using an Enzyme-Linked Immunosorbent Spot Assay Technique. Clin Vaccine Immunol 23:27-36

Showing the most recent 10 out of 106 publications